using the standard $USER and $HOSTNAME environment variables
to make reproducible builds possible.
See https://reproducible-builds.org/ for why this is good.
This helps improve issue #3759
Signed-off-by: Bernhard M. Wiedemann <bwiedemann@suse.de>
The Open MPI code base assumed that asprintf always behaved like
the FreeBSD variant, where ptr is set to NULL on error. However,
the C standard (and Linux) only guarantee that the return code will
be -1 on error and leave ptr undefined. Rather than fix all the
usage in the code, we use opal_asprintf() wrapper instead, which
guarantees the BSD-like behavior of ptr always being set to NULL.
In addition to being correct, this will fix many, many warnings
in the Open MPI code base.
Signed-off-by: Brian Barrett <bbarrett@amazon.com>
though there are no C++ bindings for oshmem, we need C++ wrappers
since a C compiler might not be able to compile a C++ source.
the C++ wrappers are :
- shmemc++ / oshc++
- shmemcxx / oshcxx
- shmemCC / oshCC (on case sensitive filesystems)
also add the examples/hello_oshmem_cxx.cc example
Thanks Bert Wesarg for bringing this to our attention
Fixesopen-mpi/ompi#2097
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
This module was always intended to be a proof of concept, and was far
from complete. If/when someone implemented F08 descriptor support for
the mpi_f08 module, this commit can either be restored or used as
reference material.
Signed-off-by: Jeff Squyres <jsquyres@cisco.com>
the 'hostname' command might not be available on some platforms
such as Fedora Core 26, so mimick config/libtool.m4 and fallback
to 'uname -n' if needed
Refs. #3680
Signed-off-by: Gilles Gouaillardet <gilles@rist.or.jp>
The expected sequence of events for processing info during object creation
is that if there's an incoming info arg, it is opal_info_dup()ed into the obj
at obj->s_info first. Then interested components register callbacks for
keys they want to know about using opal_infosubscribe_infosubscribe().
Inside info_subscribe_subscribe() the specified callback() is called with
whatever matching k/v is in the object's info, or with the default. The
return string from the callback goes into the new k/v stored in info, and
the input k/v is saved as __IN_<key>/<val>. It's saved the same way
whether the input came from info or whether it was a default. A null return
from the callback indicates an ignored key/val, and no k/v is stored for
it, but an __IN_<key>/<val> is still kept so we still have access to the
original.
At MPI_*_set_info() time, opal_infosubscribe_change_info() is used. That
function calls the registered callbacks for each item in the provided info.
If the callback returns non-null, the info is updated with that k/v, or if
the callback returns null, that key is deleted from info. An __IN_<key>/<val>
is saved either way, and overwrites any previously saved value.
When MPI_*_get_info() is called, opal_info_dup_mpistandard() is used, which
allows relatively easy changes in interpretation of the standard, by looking
at both the <key>/<val> and __IN_<key>/<val> in info. Right now it does
1. includes system extras, eg k/v defaults not expliclty set by the user
2. omits ignored keys
3. shows input values, not callback modifications, eg not the internal values
Currently the callbacks are doing things like
return some_condition ? "true" : "false"
that is, returning static strings that are not to be freed. If the return
strings start becoming more dynamic in the future I don't see how unallocated
strings could support that, so I'd propose a change for the future that
the callback()s registered with info_subscribe_subscribe() do a strdup on
their return, and we change the callers of callback() to free the strings
it returns (there are only two callers).
Rough outline of the smaller changes spread over the less central files:
comm.c
initialize comm->super.s_info to NULL
copy into comm->super.s_info in comm creation calls that provide info
OBJ_RELEASE comm->super.s_info at free time
comm_init.c
initialize comm->super.s_info to NULL
file.c
copy into file->super.s_info if file creation provides info
OBJ_RELEASE file->super.s_info at free time
win.c
copy into win->super.s_info if win creation provides info
OBJ_RELEASE win->super.s_info at free time
comm_get_info.c
file_get_info.c
win_get_info.c
change_info() if there's no info attached (shouldn't happen if callbacks
are registered)
copy the info for the user
The other category of change is generally addressing compiler warnings where
ompi_info_t and opal_info_t were being used a little too interchangably. An
ompi_info_t* contains an opal_info_t*, at &(ompi_info->super)
Also this commit updates the copyrights.
Signed-off-by: Mark Allen <markalle@us.ibm.com>
ompi_communicator_t, ompi_win_t, ompi_file_t all have a super class of type opal_infosubscriber_t instead of a base/super type of opal_object_t (in previous code comm used c_base, but file used super). It may be a bit bold to say that being a subscriber of MPI_Info is the foundational piece that ties these three things together, but if you object, then I would prefer to turn infosubscriber into a more general name that encompasses other common features rather than create a different super class. The key here is that we want to be able to pass comm, win and file objects as if they were opal_infosubscriber_t, so that one routine can heandle all 3 types of objects being passed to it.
MPI_INFO_NULL is still an ompi_predefined_info_t type since an MPI_Info is part of ompi but the internal details of the underlying information concept is part of opal.
An ompi_info_t type still exists for exposure to the user, but it is simply a wrapper for the opal object.
Routines such as ompi_info_dup, etc have all been moved to opal_info_dup and related to the opal directory.
Fortran to C translation tables are only used for MPI_Info that is exposed to the application and are therefore part of the ompi_info_t and not the opal_info_t
The data structure changes are primarily in the following files:
communicator/communicator.h
ompi/info/info.h
ompi/win/win.h
ompi/file/file.h
The following new files were created:
opal/util/info.h
opal/util/info.c
opal/util/info_subscriber.h
opal/util/info_subscriber.c
This infosubscriber concept is that communicators, files and windows can have subscribers that subscribe to any changes in the info associated with the comm/file/window. When xxx_set_info is called, the new info is presented to each subscriber who can modify the info in any way they want. The new value is presented to the next subscriber and so on until all subscribers have had a chance to modify the value. Therefore, the order of subscribers can make a difference but we hope that there is generally only one subscriber that cares or modifies any given key/value pair. The final info is then stored and returned by a call to xxx_get_info.
The new model can be seen in the following files:
ompi/mpi/c/comm_get_info.c
ompi/mpi/c/comm_set_info.c
ompi/mpi/c/file_get_info.c
ompi/mpi/c/file_set_info.c
ompi/mpi/c/win_get_info.c
ompi/mpi/c/win_set_info.c
The current subscribers where changed as follows:
mca/io/ompio/io_ompio_file_open.c
mca/io/ompio/io_ompio_module.c
mca/osc/rmda/osc_rdma_component.c (This one actually subscribes to "no_locks")
mca/osc/sm/osc_sm_component.c (This one actually subscribes to "blocking_fence" and "alloc_shared_contig")
Signed-off-by: Mark Allen <markalle@us.ibm.com>
Conflicts:
AUTHORS
ompi/communicator/comm.c
ompi/debuggers/ompi_mpihandles_dll.c
ompi/file/file.c
ompi/file/file.h
ompi/info/info.c
ompi/mca/io/ompio/io_ompio.h
ompi/mca/io/ompio/io_ompio_file_open.c
ompi/mca/io/ompio/io_ompio_file_set_view.c
ompi/mca/osc/pt2pt/osc_pt2pt.h
ompi/mca/sharedfp/addproc/sharedfp_addproc.h
ompi/mca/sharedfp/addproc/sharedfp_addproc_file_open.c
ompi/mca/topo/treematch/topo_treematch_dist_graph_create.c
ompi/mpi/c/lookup_name.c
ompi/mpi/c/publish_name.c
ompi/mpi/c/unpublish_name.c
opal/mca/mpool/base/mpool_base_alloc.c
opal/util/Makefile.am
* In open-mpi/ompi@f6f24a4f67 I missed
updating the library references for the wrapper compilers.
* Fixes the CXX wrapper compiler and CXX library is renamed as needed.
* Fixes the Java wrapper compiler and the Java library is renamed as needed.
* Add a configure time option to rename libmpi(_FOO).*
- `--with-libmpi-name=STRING`
* This commit only impacts the installed libraries.
Internal, temporary libraries have not been renamed to limit the
scope of the patch to only what is needed.
For example:
```shell
shell$ ./configure --with-libmpi-name=wookie
...
shell$ find . -name "libmpi*"
shell$ find . -name "libwookie*"
./lib/libwookie.so.0.0.0
./lib/libwookie.so.0
./lib/libwookie.so
./lib/libwookie.la
./lib/libwookie_mpifh.so.0.0.0
./lib/libwookie_mpifh.so.0
./lib/libwookie_mpifh.so
./lib/libwookie_mpifh.la
./lib/libwookie_usempi.so.0.0.0
./lib/libwookie_usempi.so.0
./lib/libwookie_usempi.so
./lib/libwookie_usempi.la
shell$
```
configury command line is quoted and made available via the OPAL_CONFIGURE_CLI macro.
it can be retrieved via {orte-info,ompi_info,oshmem_info} -c, or
{orte-info,ompi_info,oshmem_info} --all --parseable | grep ^config:cli:
NAG compiler use gcc (and not ld) as a linker, so in order to pass an option to the linker,
the flag is -Wl,-Wl,,<option> and not -Wl,<option>
Thanks Paul Hargrove for the report
This commit removes the --with-mpi-thread-multiple option and forces
MPI_THREAD_MULTIPLE support. This cleans up an abstration violation
in opal where OMPI_ENABLE_THREAD_MULTIPLE determines whether the
opal_using_threads is meaningful. To reduce the performance hit on
MPI_THREAD_SINGLE programs an OPAL_UNLIKELY is used for the
check on opal_using_threads in OPAL_THREAD_* macros.
This commit does not clean up the arguments to the various functions
that take whether muti-threading support is enabled. That should be
done at a later time.
Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
This commit does two things. It removes checks for C99 required
headers (stdlib.h, string.h, signal.h, etc). Additionally it removes
definitions for required C99 types (intptr_t, int64_t, int32_t, etc).
Signed-off-by: Nathan Hjelm <hjelmn@me.com>
Noe that this commit removes option:lt_dladvise from the various
"info" tools output. This technically breaks our CLI "ABI" because
we're not deprecating it / replacing it with an alias to some other
"into" tool output.
Although the dl/libltdl component contains an "have_lt_dladvise" MCA
var that contains the same information, the "option:lt_dladvise"
output from the various "info" tools is *not* an MCA var, and
therefore we can't alias it. So it just has to die.
Coverity identified that we treated the possibility that one of the
message buffers could be NULL in some places (because strdup() could
fail), but not in others.
So just use stack buffers that will never be NULL.
This was CID 1269914.
These two macros set the prefix for the OPAL and ORTE libraries,
respectively. Specifically, the OPAL library will be named
libPREFIXopen-pal.la and the ORTE library will be named
libPREFIXopen-rte.la.
These macros must be called, even if the prefix argument is empty.
The intent is that Open MPI will call these macros with an empty
prefix, but other projects (such as ORCM) will call these macros with
a non-empty prefix. For example, ORCM libraries can be named
liborcm-open-pal.la and liborcm-open-rte.la.
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running MPI applications under ORTE, if the ORTE and OPAL
libraries between OMPI and ORCM are not identical (which, because they
are released at different times, are likely to be different), we need
to ensure that the OMPI applications link against their ORTE and OPAL
libraries, but the ORCM executables link against their ORTE and OPAL
libraries.
the OPAL and ORTE libraries. This is required by projects such as ORCM
that have their own ORTE and OPAL libraries in order to avoid library
confusion. By renaming their version of the libraries, the OMPI
applications can correctly dynamically load the correct one for their
build."
This reverts commit 63f619f8719fb853d76130d667f228b0a523bd60.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
Update the comments to be correct.
cmr=v1.8.2:ticket=trac:4808
This commit was SVN r32300.
The following Trac tickets were found above:
Ticket 4808 --> https://svn.open-mpi.org/trac/ompi/ticket/4808
wrapper-data incorrectly adds @OMPI_WRAPPER_EXTRA_LIBS@. This fixes trac:4796 and should be
added to:
cmr=v1.8.2:reviewer=jsquyres
This commit was SVN r32299.
The following Trac tickets were found above:
Ticket 4796 --> https://svn.open-mpi.org/trac/ompi/ticket/4796