There were mistakes in the Makefiles for the ugni btl and
mca/common/ugni that prevented the ugni btl from being
used unless one happened to set the --disable-dlopen option
on the config line.
This commit fixes this problem.
Avoid a problem with double-derefence of a variable macro name (i.e.,
a macro with part of its name from an AC_SUBST, such as
```$(foo@BAR@baz)```.
In what might be a bug in Automake 1.14.1, if you do a pattern like
this:
```makefile
lib_LTLIBRARIES = lib@A_PREFIX@a_lib.la
noinst_LTLIBRARIES = lib@A_PREFIX@a_noinst.la
lib@A_PREFIX@a_lib_la_SOURCES = a.c
lib@A_PREFIX@a_noinst_la_SOURCES = $(lib@A_PREFIX@a_lib_la_SOURCES)
```
Then in the resulting Makefile, the value of
```$(lib@A_PREFIX@a_lib_la_OBJECTS)``` will be *blank* (when it really
should be ```a.o```).
To workaround this potential bug, I've simply avoided doing
double-derefences like this, and effectively set the second
```_SOURCES``` line equal to ```a.c``` (just like the first
```_SOURCES``` line).
Fixes#250.
These two macros set the prefix for the OPAL and ORTE libraries,
respectively. Specifically, the OPAL library will be named
libPREFIXopen-pal.la and the ORTE library will be named
libPREFIXopen-rte.la.
These macros must be called, even if the prefix argument is empty.
The intent is that Open MPI will call these macros with an empty
prefix, but other projects (such as ORCM) will call these macros with
a non-empty prefix. For example, ORCM libraries can be named
liborcm-open-pal.la and liborcm-open-rte.la.
This scheme is necessary to allow running Open MPI applications under
systems that use their own versions of ORTE and OPAL. For example,
when running MPI applications under ORTE, if the ORTE and OPAL
libraries between OMPI and ORCM are not identical (which, because they
are released at different times, are likely to be different), we need
to ensure that the OMPI applications link against their ORTE and OPAL
libraries, but the ORCM executables link against their ORTE and OPAL
libraries.
The GNI_RDMAMODE_FENCE bit was a left over from
async progress work that is not needed at this point
in the gni BTL. Removing the bit also allows
for the removal of the GNI_CDM_MODE_BTE_SINGLE_CHANNEL
bit from the GNI_CdmCreate call.
This commit adds initial ugni thread safety support.
With this commit, sun thread tests (excepting MPI-2 RMA)
pass with various process counts and threads/process.
Also osu_latency_mt passes.
WHAT: Merge the PMIx branch into the devel repo, creating a new
OPAL “lmix” framework to abstract PMI support for all RTEs.
Replace the ORTE daemon-level collectives with a new PMIx
server and update the ORTE grpcomm framework to support
server-to-server collectives
WHY: We’ve had problems dealing with variations in PMI implementations,
and need to extend the existing PMI definitions to meet exascale
requirements.
WHEN: Mon, Aug 25
WHERE: https://github.com/rhc54/ompi-svn-mirror.git
Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding.
All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level.
Accordingly, we have:
* created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations.
* Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported.
* Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint
* removed the prior OMPI/OPAL modex code
* added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform.
* retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand
This commit was SVN r32570.
The only user of this code was coll/sm. I implemented a basic replacement
for the removed code. This gets the trunk compiling again with
--disable-dlopen.
This commit was SVN r32333.
common/ofacm is only used by the iboffload code in ompi. This code does
not currently work so it is safe to ignore these components until it is
fixed.
This commit was SVN r32331.
WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL
All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic.
This commit was SVN r32317.
The alps ras and plm components were broken by recent changes in ORTE. This
commit resolves those issues.
Changes:
- Define PMI2_SUCCESS if it isn't defined. This fixes a problem with Cray's
PMI implementation which does not define (for some reason) PMI2_SUCCESS. We
had previously just used PMI_SUCCESS.
- Add missing definition and a typo in pml_alps_module.
- launch_id is no longer available in the orte_node_t structure. Use the
attribute lookup to get the value.
- Do not use an O(n^2) sorting algorithm when putting alps nodes in order. Use
opal_list_sort instead (O(nlogn)).
This commit was SVN r32076.
top_ompi_srcdir -> OMPI_TOP_SRCDIR
top_ompi_builddir -> OMPI_TOP_BUILDDIR
We also split the srcdir/builddir flags according to their local tree (e.g., OPAL_TOP_SRCDIR), and tied them all together in configure.ac. Renamed ompi_ignore and ompi_unignore to be opal_<foo> as these are agnostic markers.
Only thing left is ompilibdir being treated similar to what we dif for srcdir/builddir. Coming soon.
This commit was SVN r31678.
http://www.open-mpi.org/community/lists/devel/2014/04/14496.php
Revamp the opal database framework, including renaming it to "dstore" to reflect that it isn't a "database". Move the "db" framework to ORTE for now, soon to move to ORCM
This commit was SVN r31557.
A few changes were required to support this move:
1. the PMI component used to identify rte-related data (e.g., host name, bind level) and package them as a unit to reduce the number of PMI keys. This code was moved up to the ORTE layer as the OPAL layer has no understanding of these concepts. In addition, the component locally stored data based on process jobid/vpid - this could no longer be supported (see below for the solution).
2. the hash component was updated to use the new opal_identifier_t instead of orte_process_name_t as its index for storing data in the hash tables. Previously, we did a hash on the vpid and stored the data in a 32-bit hash table. In the revised system, we don't see a separate "vpid" field - we only have a 64-bit opaque value. The orte_process_name_t hash turned out to do nothing useful, so we now store the data in a 64-bit hash table. Preliminary tests didn't show any identifiable change in behavior or performance, but we'll have to see if a move back to the 32-bit table is required at some later time.
3. the db framework was a "select one" system. However, since the PMI component could no longer use its internal storage system, the framework has now been changed to a "select many" mode of operation. This allows the hash component to handle all internal storage, while the PMI component only handles pushing/pulling things from the PMI system. This was something we had planned for some time - when fetching data, we first check internal storage to see if we already have it, and then automatically go to the global system to look for it if we don't. Accordingly, the framework was provided with a custom query function used during "select" that lets you seperately specify the "store" and "fetch" ordering.
4. the ORTE grpcomm and ess/pmi components, and the nidmap code, were updated to work with the new db framework and to specify internal/global storage options.
No changes were made to the MPI layer, except for modifying the ORTE component of the OMPI/rte framework to support the new db framework.
This commit was SVN r28112.
Upgrade to hwloc 1.2 (from hwloc 1.1.2). This should fix the problems
Nathan's seeing in #2778.
Let's let this soak on the trunk for a little while and see how LANL's
MTT's work out. If that works, then we can CMR this to v1.5.
This commit was SVN r24635.
The following Trac tickets were found above:
Ticket 2778 --> https://svn.open-mpi.org/trac/ompi/ticket/2778
released):
backport hwloc r 3416 from trunk: Add cache info entry _after_ checking
that we need one, thanks Andriy Gapon for the fix
This commit was SVN r24612.
The following SVN revision numbers were found above:
r3418 --> open-mpi/ompi@9972663a12
fix will be included in hwloc 1.1.2.
Brad -- can you verify that this fixes the issue for you?
Fixes trac:2732.
This commit was SVN r24450.
The following Trac tickets were found above:
Ticket 2732 --> https://svn.open-mpi.org/trac/ompi/ticket/2732
filenames -- don't include the project name ("opal")
* Don't link maffinity/hwloc and paffinity/hwloc against the common
hwloc in the static build case (because this will result in
duplicate symbols)
This commit was SVN r24447.