1
1

implement allreduce as reduce-scatter, followed by an allgather.

This commit was SVN r18132.
Этот коммит содержится в:
Rich Graham 2008-04-11 04:06:29 +00:00
родитель 08ead87604
Коммит a6bdbfab97
4 изменённых файлов: 363 добавлений и 11 удалений

Просмотреть файл

@ -177,6 +177,9 @@ BEGIN_C_DECLS
/* log 2 of largest full power of 2 for this node set */
int log_2;
/* largest power of 2 that fits in this group */
int n_largest_pow_2;
/* node type */
int node_type;
@ -386,6 +389,9 @@ BEGIN_C_DECLS
long long barrier_bank_cntr;
/* end debug */
/* scratch space - one int per process */
int *scratch_space;
};
typedef struct mca_coll_sm2_module_t mca_coll_sm2_module_t;

Просмотреть файл

@ -1106,6 +1106,340 @@ Error:
return rc;
}
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_reducescatter_allgather(void *sbuf, void *rbuf,
int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local varibles */
int i,rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int pair_rank,exchange,extra_rank,n_proc_data,tmp;
int starting_proc,n_procs_to_read,base_block_proc,base_read_proc;
int n_elements_per_proc, n_residual_elements;
int cnt_offset,n_copy;
pair_exchange_node_t *my_exchange_node;
int my_rank,comm_size,count_processed,count_this_stripe;
int count_this_exchange;
int done_copy_tag,ok_to_copy_tag;
size_t len_data_buffer;
ptrdiff_t dt_extent;
long long tag, base_tag;
sm_work_buffer_t *sm_buffer_desc;
volatile char * my_write_pointer;
volatile char * extra_rank_write_data_pointer;
volatile char * extra_rank_read_data_pointer;
volatile char * partner_base_pointer;
volatile char * my_pointer;
volatile char * my_base_pointer;
volatile char * partner_pointer;
volatile char * source_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
partner_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
extra_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
source_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_extent(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* lenght of control and data regions */
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
len_data_buffer=n_dts_per_buffer*dt_extent;
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_exchange_node=&(sm_module->recursive_doubling_tree);
my_rank=ompi_comm_rank(comm);
comm_size=ompi_comm_size(comm);
/* get access to shared memory working buffer */
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_base_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
count_processed=0;
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get number of elements to process in this stripe */
/* debug
t2=opal_sys_timer_get_cycles();
end debug */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* compute the number of elements "owned" by each process */
n_elements_per_proc=(count_this_stripe/my_exchange_node->n_largest_pow_2);
n_residual_elements=count_this_stripe-
n_elements_per_proc*my_exchange_node->n_largest_pow_2;
for(i=0 ; i < my_exchange_node->n_largest_pow_2 ; i++ ) {
sm_module->scratch_space[i]=n_elements_per_proc;
if( i < n_residual_elements) {
sm_module->scratch_space[i]++;
}
}
/* debug
fprintf(stderr," my_rank %d element list count_this_stripe %d : ",my_rank,count_this_stripe);
for(i=0 ; i < comm_size ; i++ ) {
fprintf(stderr," %d ",sm_module->scratch_space[i]);
}
fprintf(stderr," \n");
fflush(stderr);
end debug */
/* get unique set of tags for this stripe.
* Assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
base_tag=sm_module->collective_tag;
/* log_2 tags for recursive doubling, one for the non-power of 2
* initial send, 1 for first copy into shared memory, and
* one for completing the copyout.
*/
sm_module->collective_tag+=(my_exchange_node->log_2+3);
/* copy data into the write buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_base_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug
{ int *int_tmp=(int *)my_base_pointer;
int i;
fprintf(stderr," my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_stripe ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
fflush(stderr);
}
end debug */
/* debug
t3=opal_sys_timer_get_cycles();
timers[1]+=(t3-t2);
end debug */
/* copy data in from the "extra" source, if need be */
tag=base_tag;
if(0 < my_exchange_node->n_extra_sources) {
if ( EXCHANGE_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_write_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)extra_rank_write_data_pointer,
(void *)my_base_pointer, count_this_stripe,dtype);
} else {
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
}
MB();
/*
* reduce-scatter
*/
/*
* Signal parent that data is ready
*/
tag=base_tag+1;
my_ctl_pointer->flag=tag;
/*
* loop over data exchanges
*/
/* set the number of procs whos's data I will manipulate - this starts
* at the number of procs in the exchange, so a divide by two at each
* iteration will give the right number of proc for the given iteration
*/
/* debug
{ int *int_tmp=(int *)my_base_pointer;
int i;
fprintf(stderr," GGG my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_stripe ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
fflush(stderr);
}
end debug */
n_proc_data=my_exchange_node->n_largest_pow_2;
starting_proc=0;
for(exchange=my_exchange_node->n_exchanges-1;exchange>=0;exchange--) {
/* is the remote data read */
pair_rank=my_exchange_node->rank_exchanges[exchange];
partner_ctl_pointer=
sm_buffer_desc->proc_memory[pair_rank].control_region;
partner_base_pointer=
sm_buffer_desc->proc_memory[pair_rank].data_segment;
/* wait until remote data is read */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* figure out the base address to use : the lower rank gets
* the upper data, with the higher rank getting the lower half
* of the current chunk */
n_proc_data=n_proc_data/2;
if(pair_rank < my_rank ) {
starting_proc+=n_proc_data;
}
/* figure out my staring pointer */
tmp=0;
for(i=0 ; i < starting_proc ; i++ ) {
tmp+=sm_module->scratch_space[i];
}
my_pointer=my_base_pointer+tmp*dt_extent;
/* figure out partner's staring pointer */
partner_pointer=partner_base_pointer+tmp*dt_extent;
/* figure out how much to read */
tmp=0;
for(i=starting_proc ; i < starting_proc+n_proc_data ; i++ ) {
tmp+=sm_module->scratch_space[i];
}
count_this_exchange=tmp;
/* reduce data into my write buffer */
/* apply collective operation */
ompi_op_reduce(op,(void *)partner_pointer,
(void *)my_pointer, count_this_exchange,dtype);
/* debug
{ int *int_tmp=(int *)my_pointer;
int i;
fprintf(stderr," result my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_exchange ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
int_tmp=(int *)partner_pointer;
fprintf(stderr," partner data my rank %d data in tmp :: ",my_rank);
for (i=0 ; i < count_this_exchange ; i++ ) {
fprintf(stderr," %d ",int_tmp[i]);
}
fprintf(stderr,"\n");
fflush(stderr);
}
end debug */
/* signal that I am done reading my peer's data */
tag++;
MB();
my_ctl_pointer->flag=tag;
} /* end exchange loop */
/* debug
t8=opal_sys_timer_get_cycles();
end debug */
/* copy data out to final destination. Could do some sort of
* recursive doubleing in the sm, then copy to process private,
* which reduces memory contention. However, this also almost
* doubles the number of copies.
*/
ok_to_copy_tag=base_tag+1+my_exchange_node->log_2;
/* read from the result buffers directly to the final destinaion */
cnt_offset=0;
for(n_copy=0 ; n_copy < my_exchange_node->n_largest_pow_2 ; n_copy++ ) {
if( 0 >= sm_module->scratch_space[n_copy] )
continue;
source_ctl_pointer=
sm_buffer_desc->proc_memory[n_copy].control_region;
source_pointer=
sm_buffer_desc->proc_memory[n_copy].data_segment;
/* wait until remote data is read */
while( source_ctl_pointer->flag < ok_to_copy_tag ) {
opal_progress();
}
/* copy data into the destination buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype,
sm_module->scratch_space[n_copy],
(char *)((char *)rbuf+
dt_extent*(count_processed+cnt_offset)),
(char *)((char *)source_pointer+
dt_extent*cnt_offset));
if( 0 != rc ) {
return OMPI_ERROR;
}
cnt_offset+=sm_module->scratch_space[n_copy];
}
done_copy_tag=base_tag+2+my_exchange_node->log_2;
my_ctl_pointer->flag=done_copy_tag;
/* wait for all to read the data, before re-using this buffer */
if( stripe_number < (n_data_segments-1) ) {
for(n_copy=0 ; n_copy < comm_size ; n_copy++ ) {
source_ctl_pointer=
sm_buffer_desc->proc_memory[n_copy].control_region;
while( source_ctl_pointer-> flag < done_copy_tag ) {
opal_progress();
}
}
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
/* return */
return rc;
Error:
return rc;
}
#if 0
/* just storing various versions of the recursive doubling algorithm,
* so can compare them later on.
@ -1421,17 +1755,7 @@ int mca_coll_sm2_allreduce_intra_recursive_doubling(void *sbuf, void *rbuf,
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug
t9=opal_sys_timer_get_cycles();
timers[5]+=(t9-t8);
end debug */
/* "free" the shared-memory working buffer */
/* debug
t10=opal_sys_timer_get_cycles();
timers[6]+=(t10-t9);
end debug */
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
@ -1462,13 +1786,18 @@ int mca_coll_sm2_allreduce_intra(void *sbuf, void *rbuf, int count,
#if 0
if( 0 != (op->o_flags & OMPI_OP_FLAGS_COMMUTE)) {
#endif
/* Commutative Operation */
rc= mca_coll_sm2_allreduce_intra_recursive_doubling(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
#endif
rc= mca_coll_sm2_allreduce_intra_reducescatter_allgather(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
#if 0
} else {
/* Non-Commutative Operation */

Просмотреть файл

@ -1022,6 +1022,12 @@ mca_coll_sm2_comm_query(struct ompi_communicator_t *comm, int *priority)
}
/* allocate process private scratch space */
sm_module->scratch_space=(int *)malloc(sizeof(int)*group_size);
if( NULL == sm_module->scratch_space) {
goto CLEANUP;
}
/* touch pages to apply memory affinity - Note: do we really need this or will
* the algorithms do this */
@ -1060,6 +1066,11 @@ CLEANUP:
sm_module->sm_buffer_descriptor=NULL;
}
if(sm_module->scratch_space) {
free(sm_module->scratch_space);
sm_module->scratch_space=NULL;
}
OBJ_RELEASE(sm_module);
return NULL;

Просмотреть файл

@ -234,6 +234,12 @@ int setup_recursive_doubling_tree_node(int num_nodes, int node_rank,
}
exchange_node->log_2=n_exchanges;
tmp=1;
for(i=0 ; i < n_exchanges ; i++ ) {
tmp*=2;
}
exchange_node->n_largest_pow_2=tmp;
/* set node characteristics - node that is not within the largest
* power of 2 will just send it's data to node that will participate
* in the recursive doubling, and get the result back at the end.