io/ompio: change the increment for cost based aggr. selection
- change the increment used to test various no. of aggregators to avoid using only power of two numbers - convert some paratemers in the cost function from integers to to floats for providing smoother and more consistent results - set the FVIEW_IS_SET flag on the file *only* if the user has set anything else than the default file view. Signed-off-by: Edgar Gabriel <gabriel@cs.uh.edu>
Этот коммит содержится в:
родитель
f258036e06
Коммит
8fe1c63e25
@ -96,7 +96,6 @@ int mca_common_ompio_set_view (mca_io_ompio_file_t *fh,
|
||||
if ( fh->f_flags & OMPIO_UNIFORM_FVIEW ) {
|
||||
fh->f_flags &= ~OMPIO_UNIFORM_FVIEW;
|
||||
}
|
||||
fh->f_flags |= OMPIO_FILE_VIEW_IS_SET;
|
||||
fh->f_datarep = strdup (datarep);
|
||||
datatype_duplicate (filetype, &fh->f_orig_filetype );
|
||||
|
||||
@ -113,6 +112,7 @@ int mca_common_ompio_set_view (mca_io_ompio_file_t *fh,
|
||||
}
|
||||
else {
|
||||
newfiletype = filetype;
|
||||
fh->f_flags |= OMPIO_FILE_VIEW_IS_SET;
|
||||
}
|
||||
|
||||
fh->f_iov_count = 0;
|
||||
|
@ -47,14 +47,13 @@
|
||||
**
|
||||
** The first group functions determines the number of aggregators based on various characteristics
|
||||
**
|
||||
** 1. simple_grouping: A simple heuristic based on the amount of data written and size of
|
||||
** of the temporary buffer used by aggregator processes
|
||||
** 1. simple_grouping: A heuristic based on a cost model
|
||||
** 2. fview_based_grouping: analysis the fileview to detect regular patterns
|
||||
** 3. cart_based_grouping: uses a cartesian communicator to derive certain (probable) properties
|
||||
** of the access pattern
|
||||
*/
|
||||
|
||||
int mca_io_base_check_params ( size_t, size_t, int, int);
|
||||
|
||||
static double cost_calc (int P, int P_agg, size_t Data_proc, size_t coll_buffer, int dim );
|
||||
#define DIM1 1
|
||||
#define DIM2 2
|
||||
@ -68,9 +67,16 @@ int mca_io_ompio_simple_grouping(mca_io_ompio_file_t *fh,
|
||||
int total_procs = 0;
|
||||
int num_groups=1;
|
||||
|
||||
double time1=0.0, time2=0.0, dtime=0.0, dtime2=0.0, dtime_diff=0.0;
|
||||
double time=0.0, time_prev=0.0, dtime=0.0, dtime_abs=0.0, dtime_diff=0.0, dtime_prev=0.0;
|
||||
double dtime_threshold=0.0;
|
||||
int mode=1;
|
||||
|
||||
/* This is the threshold for absolute improvement. It is not
|
||||
** exposed as an MCA parameter to avoid overwhelming users. It is
|
||||
** mostly relevant for smaller process counts and data volumes.
|
||||
*/
|
||||
double time_threshold=0.001;
|
||||
|
||||
int incr=1, mode=1;
|
||||
int P_a, P_a_prev;
|
||||
|
||||
/* The aggregator selection algorithm is based on the formulas described
|
||||
@ -107,43 +113,71 @@ int mca_io_ompio_simple_grouping(mca_io_ompio_file_t *fh,
|
||||
*/
|
||||
mode = ( fh->f_cc_size == fh->f_view_size ) ? 1 : 2;
|
||||
|
||||
for ( P_a = 1; P_a <= fh->f_size; P_a *= 2 ) {
|
||||
time1 = cost_calc ( fh->f_size, P_a, fh->f_view_size, (size_t) fh->f_bytes_per_agg, mode );
|
||||
if ( P_a != 1 ) {
|
||||
dtime = (time2 - time1) / time2;
|
||||
dtime_diff = fabs(dtime2 - dtime);
|
||||
/* Determine the increment size when searching the optimal
|
||||
** no. of aggregators
|
||||
*/
|
||||
if ( fh->f_size < 16 ) {
|
||||
incr = 2;
|
||||
}
|
||||
else if (fh->f_size < 128 ) {
|
||||
incr = 4;
|
||||
}
|
||||
else if ( fh->f_size < 4096 ) {
|
||||
incr = 16;
|
||||
}
|
||||
else {
|
||||
incr = 32;
|
||||
}
|
||||
|
||||
P_a = 1;
|
||||
time_prev = cost_calc ( fh->f_size, P_a, fh->f_view_size, (size_t) fh->f_bytes_per_agg, mode );
|
||||
P_a_prev = P_a;
|
||||
for ( P_a = incr; P_a <= fh->f_size; P_a += incr ) {
|
||||
time = cost_calc ( fh->f_size, P_a, fh->f_view_size, (size_t) fh->f_bytes_per_agg, mode );
|
||||
dtime_abs = (time_prev - time);
|
||||
dtime = dtime_abs / time_prev;
|
||||
dtime_diff = ( P_a == incr ) ? dtime : (dtime_prev - dtime);
|
||||
#ifdef OMPIO_DEBUG
|
||||
printf(" d_p = %ld P_a = %d time1 = %lf dtime = %lf dtime_diff=%lf\n", fh->f_view_size, P_a, time1, dtime, dtime_diff );
|
||||
if ( 0 == fh->f_rank ){
|
||||
printf(" d_p = %ld P_a = %d time = %lf dtime = %lf dtime_abs =%lf dtime_diff=%lf\n",
|
||||
fh->f_view_size, P_a, time, dtime, dtime_abs, dtime_diff );
|
||||
}
|
||||
#endif
|
||||
if ( dtime_diff < dtime_threshold ) {
|
||||
if ( dtime_diff < dtime_threshold ) {
|
||||
/* The relative improvement compared to the last number
|
||||
** of aggregators was below a certain threshold. This is typically
|
||||
** the dominating factor for large data volumes and larger process
|
||||
** counts
|
||||
*/
|
||||
#ifdef OMPIO_DEBUG
|
||||
printf(" For P=%d d_p=%ld b_c=%d chosen P_a = %d \n", fh->f_size, fh->f_view_size, fh->f_bytes_per_agg, P_a_prev);
|
||||
#endif
|
||||
num_groups = P_a_prev;
|
||||
break;
|
||||
if ( 0 == fh->f_rank ) {
|
||||
printf("dtime_diff below threshold\n");
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
else {
|
||||
time2 = time1;
|
||||
if ( dtime_abs < time_threshold ) {
|
||||
/* The absolute improvement compared to the last number
|
||||
** of aggregators was below a given threshold. This is typically
|
||||
** important for small data valomes and smallers process counts
|
||||
*/
|
||||
#ifdef OMPIO_DEBUG
|
||||
if ( 0 == fh->f_rank ) {
|
||||
printf("dtime_abs below threshold\n");
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
dtime2 = dtime;
|
||||
time_prev = time;
|
||||
dtime_prev = dtime;
|
||||
P_a_prev = P_a;
|
||||
}
|
||||
|
||||
num_groups = P_a_prev;
|
||||
#ifdef OMPIO_DEBUG
|
||||
if ( fh->f_rank == 0 ) {
|
||||
if ( mca_io_base_check_params ( fh->f_view_size, fh->f_cc_size, fh->f_bytes_per_agg, -1 ) ) {
|
||||
if ( fh->f_view_size == MCA_IO_DEFAULT_FILE_VIEW_SIZE && MCA_IO_DEFAULT_FILE_VIEW_SIZE == fh->f_cc_size ) {
|
||||
/* This is the default file view, not interested in it */
|
||||
}
|
||||
else {
|
||||
printf("fstype=%d view_size=%ld cc_size=%ld stripe_size=%ld\n", fh->f_fstype, fh->f_view_size,
|
||||
fh->f_cc_size, fh->f_stripe_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
printf(" For P=%d d_p=%ld b_c=%d threshold=%f chosen P_a = %d \n",
|
||||
fh->f_size, fh->f_view_size, fh->f_bytes_per_agg, dtime_threshold, P_a_prev);
|
||||
#endif
|
||||
|
||||
|
||||
/* Cap the maximum number of aggregators.*/
|
||||
if ( num_groups > (fh->f_size/mca_io_ompio_max_aggregators_ratio)) {
|
||||
num_groups = (fh->f_size/mca_io_ompio_max_aggregators_ratio);
|
||||
@ -488,6 +522,9 @@ int mca_io_ompio_set_aggregator_props (struct mca_io_ompio_file_t *fh,
|
||||
/* Forced number of aggregators
|
||||
** calculate the offset at which each group of processes will start
|
||||
*/
|
||||
if ( num_aggregators > fh->f_size ) {
|
||||
num_aggregators = fh->f_size;
|
||||
}
|
||||
procs_per_group = ceil ((float)fh->f_size/num_aggregators);
|
||||
|
||||
/* calculate the number of processes in the local group */
|
||||
@ -1370,73 +1407,77 @@ exit:
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This is the actual formula of the cost function from the paper.
|
||||
** One change made here is to use floating point values for
|
||||
** all parameters, since the ceil() function leads to sometimes
|
||||
** unexpected jumps in the execution time. Using float leads to
|
||||
** more consistent predictions for the no. of aggregators.
|
||||
*/
|
||||
static double cost_calc (int P, int P_a, size_t d_p, size_t b_c, int dim )
|
||||
{
|
||||
int n_as, m_s, n_s;
|
||||
int n_ar;
|
||||
double t_send, t_recv, t_tot;
|
||||
float n_as=1.0, m_s=1.0, n_s=1.0;
|
||||
float n_ar=1.0;
|
||||
double t_send, t_recv, t_tot;
|
||||
|
||||
/* LogGP parameters based on DDR InfiniBand values */
|
||||
double L=.00000184;
|
||||
double o=.00000149;
|
||||
double g=.0000119;
|
||||
double G=.00000000067;
|
||||
|
||||
long file_domain = (P * d_p) / P_a;
|
||||
int n_r = ceil ((float)file_domain/(float) b_c);
|
||||
// printf("p=%d, p_a =%d, d_p= %d, b_c=%d, iter=%d\n",
|
||||
// P, P_a, d_p, b_c, iteration);
|
||||
switch (dim) {
|
||||
case DIM1:
|
||||
{
|
||||
if( d_p > b_c ){
|
||||
//printf("case 1\n");
|
||||
n_ar = 1;
|
||||
n_as = 1;
|
||||
m_s = b_c;
|
||||
n_s = ceil((float)d_p/(float)b_c);
|
||||
}
|
||||
else {
|
||||
n_ar = ceil((float)b_c/(float)d_p);
|
||||
n_as = 1;
|
||||
m_s = d_p;
|
||||
n_s = 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case DIM2:
|
||||
{
|
||||
int P_x, P_y, c;
|
||||
|
||||
P_x = P_y = (int) sqrt(P);
|
||||
c = ceil((float)P_a / (float)P_x);
|
||||
|
||||
n_ar = P_y;
|
||||
n_as = c;
|
||||
if ( d_p > (P_a*b_c/P )) {
|
||||
m_s = (int)fmin(b_c / P_y, d_p);
|
||||
}
|
||||
else {
|
||||
m_s = (int)fmin(d_p * P_x / P_a, d_p);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default :
|
||||
printf("stop putting random values\n");
|
||||
break;
|
||||
}
|
||||
|
||||
n_s = ceil(((float) d_p / (float)(n_as * m_s)));
|
||||
// printf("n_r=%d \t n_ar = %d \t n_as =%d \t n_s=%d \t m_s= %d\n",n_r, n_ar, n_as, n_s, m_s);
|
||||
|
||||
if(m_s < 33554432)
|
||||
g = .00000108;
|
||||
|
||||
t_send = n_s * (L + 2 * o + (n_as -1) * g + (m_s - 1) * n_as * G);
|
||||
t_recv= n_r * (L + 2 * o + (n_ar -1) * g + (m_s - 1) * n_ar * G);;
|
||||
t_tot = t_send + t_recv;
|
||||
|
||||
// printf("%lf\t%lf\t%lf\n", t_send, t_recv, t_tot);
|
||||
return t_tot;
|
||||
/* LogGP parameters based on DDR InfiniBand values */
|
||||
double L=.00000184;
|
||||
double o=.00000149;
|
||||
double g=.0000119;
|
||||
double G=.00000000067;
|
||||
|
||||
long file_domain = (P * d_p) / P_a;
|
||||
float n_r = (float)file_domain/(float) b_c;
|
||||
|
||||
switch (dim) {
|
||||
case DIM1:
|
||||
{
|
||||
if( d_p > b_c ){
|
||||
//printf("case 1\n");
|
||||
n_ar = 1;
|
||||
n_as = 1;
|
||||
m_s = b_c;
|
||||
n_s = (float)d_p/(float)b_c;
|
||||
}
|
||||
else {
|
||||
n_ar = (float)b_c/(float)d_p;
|
||||
n_as = 1;
|
||||
m_s = d_p;
|
||||
n_s = 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case DIM2:
|
||||
{
|
||||
int P_x, P_y, c;
|
||||
|
||||
P_x = P_y = (int) sqrt(P);
|
||||
c = (float) P_a / (float)P_x;
|
||||
|
||||
n_ar = (float) P_y;
|
||||
n_as = (float) c;
|
||||
if ( d_p > (P_a*b_c/P )) {
|
||||
m_s = fmin(b_c / P_y, d_p);
|
||||
}
|
||||
else {
|
||||
m_s = fmin(d_p * P_x / P_a, d_p);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default :
|
||||
printf("stop putting random values\n");
|
||||
break;
|
||||
}
|
||||
|
||||
n_s = (float) d_p / (float)(n_as * m_s);
|
||||
|
||||
if( m_s < 33554432) {
|
||||
g = .00000108;
|
||||
}
|
||||
t_send = n_s * (L + 2 * o + (n_as -1) * g + (m_s - 1) * n_as * G);
|
||||
t_recv= n_r * (L + 2 * o + (n_ar -1) * g + (m_s - 1) * n_ar * G);;
|
||||
t_tot = t_send + t_recv;
|
||||
|
||||
return t_tot;
|
||||
}
|
||||
|
||||
|
Загрузка…
x
Ссылка в новой задаче
Block a user