1
1

coll/libnbc: add Rabenseifner's algorithm for MPI_Ireduce

An implementation of R. Rabenseifner's algorithm for MPI_Ireduce.
This algorithm is a combination of a reduce-scatter implemented with recursive vector halving
and recursive distance doubling, followed either by a gather.

Limitations:
-- count >= 2^{\floor{\log_2 p}}
-- commutative operations only
-- intra-communicators only

Signed-off-by: Mikhail Kurnosov <mkurnosov@gmail.com>
Этот коммит содержится в:
Mikhail Kurnosov 2018-09-10 21:33:31 +07:00
родитель b0e6d1fefc
Коммит 7bd63e79c8
3 изменённых файлов: 401 добавлений и 9 удалений

Просмотреть файл

@ -71,6 +71,7 @@ BEGIN_C_DECLS
extern bool libnbc_ibcast_skip_dt_decision;
extern int libnbc_iexscan_algorithm;
extern int libnbc_ireduce_algorithm;
extern int libnbc_iscan_algorithm;
struct ompi_coll_libnbc_component_t {

Просмотреть файл

@ -54,6 +54,15 @@ static mca_base_var_enum_value_t iexscan_algorithms[] = {
{0, NULL}
};
int libnbc_ireduce_algorithm = 0; /* ireduce user forced algorithm */
static mca_base_var_enum_value_t ireduce_algorithms[] = {
{0, "ignore"},
{1, "chain"},
{2, "binomial"},
{3, "rabenseifner"},
{0, NULL}
};
int libnbc_iscan_algorithm = 0; /* iscan user forced algorithm */
static mca_base_var_enum_value_t iscan_algorithms[] = {
{0, "ignore"},
@ -185,6 +194,16 @@ libnbc_register(void)
&libnbc_iexscan_algorithm);
OBJ_RELEASE(new_enum);
libnbc_ireduce_algorithm = 0;
(void) mca_base_var_enum_create("coll_libnbc_ireduce_algorithms", ireduce_algorithms, &new_enum);
mca_base_component_var_register(&mca_coll_libnbc_component.super.collm_version,
"ireduce_algorithm",
"Which ireduce algorithm is used: 0 ignore, 1 chain, 2 binomial, 3 rabenseifner",
MCA_BASE_VAR_TYPE_INT, new_enum, 0, MCA_BASE_VAR_FLAG_SETTABLE,
OPAL_INFO_LVL_5, MCA_BASE_VAR_SCOPE_ALL,
&libnbc_ireduce_algorithm);
OBJ_RELEASE(new_enum);
libnbc_iscan_algorithm = 0;
(void) mca_base_var_enum_create("coll_libnbc_iscan_algorithms", iscan_algorithms, &new_enum);
mca_base_component_var_register(&mca_coll_libnbc_component.super.collm_version,

Просмотреть файл

@ -20,6 +20,7 @@
*/
#include "opal/include/opal/align.h"
#include "opal/util/bit_ops.h"
#include "ompi/op/op.h"
#include "nbc_internal.h"
@ -31,6 +32,10 @@ static inline int red_sched_chain (int rank, int p, int root, const void *sendbu
static inline int red_sched_linear (int rank, int rsize, int root, const void *sendbuf, void *recvbuf, void *tmpbuf, int count, MPI_Datatype datatype,
MPI_Op op, NBC_Schedule *schedule);
static inline int red_sched_redscat_gather(
int rank, int comm_size, int root, const void *sbuf, void *rbuf,
char tmpredbuf, int count, MPI_Datatype datatype, MPI_Op op, char inplace,
NBC_Schedule *schedule, void *tmp_buf, struct ompi_communicator_t *comm);
#ifdef NBC_CACHE_SCHEDULE
/* tree comparison function for schedule cache */
@ -63,7 +68,7 @@ static int nbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Da
char *redbuf=NULL, inplace;
void *tmpbuf;
char tmpredbuf = 0;
enum { NBC_RED_BINOMIAL, NBC_RED_CHAIN } alg;
enum { NBC_RED_BINOMIAL, NBC_RED_CHAIN, NBC_RED_REDSCAT_GATHER} alg;
ompi_coll_libnbc_module_t *libnbc_module = (ompi_coll_libnbc_module_t*) module;
ptrdiff_t span, gap;
@ -98,22 +103,42 @@ static int nbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Da
span = opal_datatype_span(&datatype->super, count, &gap);
/* algorithm selection */
if (p > 4 || size * count < 65536 || !ompi_op_is_commute(op)) {
alg = NBC_RED_BINOMIAL;
if(rank == root) {
/* root reduces in receivebuffer */
tmpbuf = malloc (span);
int nprocs_pof2 = opal_next_poweroftwo(p) >> 1;
if (libnbc_ireduce_algorithm == 0) {
if (ompi_op_is_commute(op) && p > 2 && count >= nprocs_pof2) {
alg = NBC_RED_REDSCAT_GATHER;
} else if (p > 4 || size * count < 65536 || !ompi_op_is_commute(op)) {
alg = NBC_RED_BINOMIAL;
} else {
alg = NBC_RED_CHAIN;
}
} else {
if (libnbc_ireduce_algorithm == 1) {
alg = NBC_RED_CHAIN;
} else if (libnbc_ireduce_algorithm == 2) {
alg = NBC_RED_BINOMIAL;
} else if (libnbc_ireduce_algorithm == 3 && ompi_op_is_commute(op) && p > 2 && count >= nprocs_pof2) {
alg = NBC_RED_REDSCAT_GATHER;
} else {
alg = NBC_RED_CHAIN;
}
}
/* allocate temporary buffers */
if (alg == NBC_RED_REDSCAT_GATHER || alg == NBC_RED_BINOMIAL) {
if (rank == root) {
/* root reduces in receive buffer */
tmpbuf = malloc(span);
redbuf = recvbuf;
} else {
/* recvbuf may not be valid on non-root nodes */
ptrdiff_t span_align = OPAL_ALIGN(span, datatype->super.align, ptrdiff_t);
tmpbuf = malloc (span_align + span);
redbuf = (char*)span_align - gap;
tmpbuf = malloc(span_align + span);
redbuf = (char *)span_align - gap;
tmpredbuf = 1;
}
} else {
tmpbuf = malloc (span);
alg = NBC_RED_CHAIN;
segsize = 16384/2;
}
@ -151,6 +176,9 @@ static int nbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Da
case NBC_RED_CHAIN:
res = red_sched_chain(rank, p, root, sendbuf, recvbuf, count, datatype, op, ext, size, schedule, tmpbuf, segsize);
break;
case NBC_RED_REDSCAT_GATHER:
res = red_sched_redscat_gather(rank, p, root, sendbuf, redbuf, tmpredbuf, count, datatype, op, inplace, schedule, tmpbuf, comm);
break;
}
}
@ -560,6 +588,350 @@ static inline int red_sched_linear (int rank, int rsize, int root, const void *s
return OMPI_SUCCESS;
}
/*
* red_sched_redscat_gather:
*
* Description: an implementation of Rabenseifner's Reduce algorithm [1, 2].
* [1] Rajeev Thakur, Rolf Rabenseifner and William Gropp.
* Optimization of Collective Communication Operations in MPICH //
* The Int. Journal of High Performance Computing Applications. Vol 19,
* Issue 1, pp. 49--66.
* [2] http://www.hlrs.de/mpi/myreduce.html.
*
* This algorithm is a combination of a reduce-scatter implemented with
* recursive vector halving and recursive distance doubling, followed either
* by a binomial tree gather.
*
* Step 1. If the number of processes is not a power of two, reduce it to
* the nearest lower power of two (p' = 2^{\floor{\log_2 p}})
* by removing r = p - p' extra processes as follows. In the first 2r processes
* (ranks 0 to 2r - 1), all the even ranks send the second half of the input
* vector to their right neighbor (rank + 1), and all the odd ranks send
* the first half of the input vector to their left neighbor (rank - 1).
* The even ranks compute the reduction on the first half of the vector and
* the odd ranks compute the reduction on the second half. The odd ranks then
* send the result to their left neighbors (the even ranks). As a result,
* the even ranks among the first 2r processes now contain the reduction with
* the input vector on their right neighbors (the odd ranks). These odd ranks
* do not participate in the rest of the algorithm, which leaves behind
* a power-of-two number of processes. The first r even-ranked processes and
* the last p - 2r processes are now renumbered from 0 to p' - 1.
*
* Step 2. The remaining processes now perform a reduce-scatter by using
* recursive vector halving and recursive distance doubling. The even-ranked
* processes send the second half of their buffer to rank + 1 and the odd-ranked
* processes send the first half of their buffer to rank - 1. All processes
* then compute the reduction between the local buffer and the received buffer.
* In the next log_2(p') - 1 steps, the buffers are recursively halved, and the
* distance is doubled. At the end, each of the p' processes has 1 / p' of the
* total reduction result.
*
* Step 3. A binomial tree gather is performed by using recursive vector
* doubling and distance halving. In the non-power-of-two case, if the root
* happens to be one of those odd-ranked processes that would normally
* be removed in the first step, then the role of this process and process 0
* are interchanged.
*
* Limitations:
* count >= 2^{\floor{\log_2 p}}
* commutative operations only
* intra-communicators only
*
* Memory requirements (per process):
* rank != root: 2 * count * typesize + 4 * \log_2(p) * sizeof(int) = O(count)
* rank == root: count * typesize + 4 * \log_2(p) * sizeof(int) = O(count)
*
* Schedule length (rounds): O(\log(p))
* Recommendations: root = 0, otherwise it is required additional steps
* in the root process.
*/
static inline int red_sched_redscat_gather(
int rank, int comm_size, int root, const void *sbuf, void *rbuf,
char tmpredbuf, int count, MPI_Datatype datatype, MPI_Op op, char inplace,
NBC_Schedule *schedule, void *tmp_buf, struct ompi_communicator_t *comm)
{
int res = OMPI_SUCCESS;
int *rindex = NULL, *rcount = NULL, *sindex = NULL, *scount = NULL;
/* Find nearest power-of-two less than or equal to comm_size */
int nsteps = opal_hibit(comm_size, comm->c_cube_dim + 1); /* ilog2(comm_size) */
int nprocs_pof2 = 1 << nsteps; /* flp2(comm_size) */
ptrdiff_t lb, extent;
ompi_datatype_get_extent(datatype, &lb, &extent);
if ((rank != root) || !inplace) {
res = NBC_Sched_copy((char *)sbuf, false, count, datatype,
rbuf, tmpredbuf, count, datatype, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
}
/*
* Step 1. Reduce the number of processes to the nearest lower power of two
* p' = 2^{\floor{\log_2 p}} by removing r = p - p' processes.
* 1. In the first 2r processes (ranks 0 to 2r - 1), all the even ranks send
* the second half of the input vector to their right neighbor (rank + 1)
* and all the odd ranks send the first half of the input vector to their
* left neighbor (rank - 1).
* 2. All 2r processes compute the reduction on their half.
* 3. The odd ranks then send the result to their left neighbors
* (the even ranks).
*
* The even ranks (0 to 2r - 1) now contain the reduction with the input
* vector on their right neighbors (the odd ranks). The first r even
* processes and the p - 2r last processes are renumbered from
* 0 to 2^{\floor{\log_2 p}} - 1. These odd ranks do not participate in the
* rest of the algorithm.
*/
int vrank, step, wsize;
int nprocs_rem = comm_size - nprocs_pof2;
if (rank < 2 * nprocs_rem) {
int count_lhalf = count / 2;
int count_rhalf = count - count_lhalf;
if (rank % 2 != 0) {
/*
* Odd process -- exchange with rank - 1
* Send the left half of the input vector to the left neighbor,
* Recv the right half of the input vector from the left neighbor
*/
res = NBC_Sched_send(rbuf, tmpredbuf, count_lhalf, datatype, rank - 1,
schedule, false);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
res = NBC_Sched_recv((char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
false, count_rhalf, datatype, rank - 1, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
res = NBC_Sched_op((char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
false, (char *)rbuf + (ptrdiff_t)count_lhalf * extent,
tmpredbuf, count_rhalf, datatype, op, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
/* Send the right half to the left neighbor */
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
tmpredbuf, count_rhalf, datatype, rank - 1, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
/* This process does not participate in recursive doubling phase */
vrank = -1;
} else {
/*
* Even process -- exchange with rank + 1
* Send the right half of the input vector to the right neighbor,
* Recv the left half of the input vector from the right neighbor
*/
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
tmpredbuf, count_rhalf, datatype, rank + 1, schedule, false);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
res = NBC_Sched_recv((char *)tmp_buf, false, count_lhalf, datatype, rank + 1,
schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
res = NBC_Sched_op(tmp_buf, false, rbuf, tmpredbuf, count_lhalf,
datatype, op, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
/* Recv the right half from the right neighbor */
res = NBC_Sched_recv((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
tmpredbuf, count_rhalf, datatype, rank + 1, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
vrank = rank / 2;
}
} else { /* rank >= 2 * nprocs_rem */
vrank = rank - nprocs_rem;
}
/*
* Step 2. Reduce-scatter implemented with recursive vector halving and
* recursive distance doubling. We have p' = 2^{\floor{\log_2 p}}
* power-of-two number of processes with new ranks (vrank) and result in rbuf.
*
* The even-ranked processes send the right half of their buffer to rank + 1
* and the odd-ranked processes send the left half of their buffer to
* rank - 1. All processes then compute the reduction between the local
* buffer and the received buffer. In the next \log_2(p') - 1 steps, the
* buffers are recursively halved, and the distance is doubled. At the end,
* each of the p' processes has 1 / p' of the total reduction result.
*/
rindex = malloc(sizeof(*rindex) * nsteps); /* O(\log_2(p)) */
sindex = malloc(sizeof(*sindex) * nsteps);
rcount = malloc(sizeof(*rcount) * nsteps);
scount = malloc(sizeof(*scount) * nsteps);
if (NULL == rindex || NULL == sindex || NULL == rcount || NULL == scount) {
res = OMPI_ERR_OUT_OF_RESOURCE;
goto cleanup_and_return;
}
if (vrank != -1) {
step = 0;
wsize = count;
sindex[0] = rindex[0] = 0;
for (int mask = 1; mask < nprocs_pof2; mask <<= 1) {
/*
* On each iteration: rindex[step] = sindex[step] -- begining of the
* current window. Length of the current window is storded in wsize.
*/
int vdest = vrank ^ mask;
/* Translate vdest virtual rank to real rank */
int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
if (rank < dest) {
/*
* Recv into the left half of the current window, send the right
* half of the window to the peer (perform reduce on the left
* half of the current window)
*/
rcount[step] = wsize / 2;
scount[step] = wsize - rcount[step];
sindex[step] = rindex[step] + rcount[step];
} else {
/*
* Recv into the right half of the current window, send the left
* half of the window to the peer (perform reduce on the right
* half of the current window)
*/
scount[step] = wsize / 2;
rcount[step] = wsize - scount[step];
rindex[step] = sindex[step] + scount[step];
}
/* Send part of data from the rbuf, recv into the tmp_buf */
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
tmpredbuf, scount[step], datatype, dest, schedule, false);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
res = NBC_Sched_recv((char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
false, rcount[step], datatype, dest, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
/* Local reduce: rbuf[] = tmp_buf[] <op> rbuf[] */
res = NBC_Sched_op((char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
false, (char *)rbuf + (ptrdiff_t)rindex[step] * extent,
tmpredbuf, rcount[step], datatype, op, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
/* Move the current window to the received message */
if (step + 1 < nsteps) {
rindex[step + 1] = rindex[step];
sindex[step + 1] = rindex[step];
wsize = rcount[step];
step++;
}
}
}
/*
* Assertion: each process has 1 / p' of the total reduction result:
* rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
*/
/*
* Setup the root process for gather operation.
* Case 1: root < 2r and root is odd -- root process was excluded on step 1
* Recv data from process 0, vroot = 0, vrank = 0
* Case 2: root < 2r and root is even: vroot = root / 2
* Case 3: root >= 2r: vroot = root - r
*/
int vroot = 0;
if (root < 2 * nprocs_rem) {
if (root % 2 != 0) {
vroot = 0;
if (rank == root) {
/*
* Case 1: root < 2r and root is odd -- root process was
* excluded on step 1 (newrank == -1).
* Recv a data from the process 0.
*/
rindex[0] = 0;
step = 0, wsize = count;
for (int mask = 1; mask < nprocs_pof2; mask *= 2) {
rcount[step] = wsize / 2;
scount[step] = wsize - rcount[step];
rindex[step] = 0;
sindex[step] = rcount[step];
step++;
wsize /= 2;
}
res = NBC_Sched_recv(rbuf, tmpredbuf, rcount[nsteps - 1], datatype,
0, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
vrank = 0;
} else if (vrank == 0) {
/* Send a data to the root */
res = NBC_Sched_send(rbuf, tmpredbuf, rcount[nsteps - 1], datatype,
root, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
vrank = -1;
}
} else {
/* Case 2: root < 2r and a root is even: vroot = root / 2 */
vroot = root / 2;
}
} else {
/* Case 3: root >= 2r: newroot = root - r */
vroot = root - nprocs_rem;
}
/*
* Step 3. Gather result at the vroot by the binomial tree algorithm.
* Each process has 1 / p' of the total reduction result:
* rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
* All exchanges are executed in reverse order relative
* to recursive doubling (previous step).
*/
if (vrank != -1) {
int vdest_tree, vroot_tree;
step = nsteps - 1; /* step = ilog2(p') - 1 */
for (int mask = nprocs_pof2 >> 1; mask > 0; mask >>= 1) {
int vdest = vrank ^ mask;
/* Translate vdest virtual rank to real rank */
int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
if ((vdest == 0) && (root < 2 * nprocs_rem) && (root % 2 != 0))
dest = root;
vdest_tree = vdest >> step;
vdest_tree <<= step;
vroot_tree = vroot >> step;
vroot_tree <<= step;
if (vdest_tree == vroot_tree) {
/* Send data from rbuf and exit */
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)rindex[step] * extent,
tmpredbuf, rcount[step], datatype, dest, schedule, false);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
break;
} else {
/* Recv and continue */
res = NBC_Sched_recv((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
tmpredbuf, scount[step], datatype, dest, schedule, true);
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
}
step--;
}
}
cleanup_and_return:
if (NULL != rindex)
free(rindex);
if (NULL != sindex)
free(sindex);
if (NULL != rcount)
free(rcount);
if (NULL != scount)
free(scount);
return res;
}
int ompi_coll_libnbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, struct ompi_communicator_t *comm, MPI_Info info, ompi_request_t ** request,
struct mca_coll_base_module_2_3_0_t *module) {