coll/libnbc: add Rabenseifner's algorithm for MPI_Ireduce
An implementation of R. Rabenseifner's algorithm for MPI_Ireduce. This algorithm is a combination of a reduce-scatter implemented with recursive vector halving and recursive distance doubling, followed either by a gather. Limitations: -- count >= 2^{\floor{\log_2 p}} -- commutative operations only -- intra-communicators only Signed-off-by: Mikhail Kurnosov <mkurnosov@gmail.com>
Этот коммит содержится в:
родитель
b0e6d1fefc
Коммит
7bd63e79c8
@ -71,6 +71,7 @@ BEGIN_C_DECLS
|
||||
|
||||
extern bool libnbc_ibcast_skip_dt_decision;
|
||||
extern int libnbc_iexscan_algorithm;
|
||||
extern int libnbc_ireduce_algorithm;
|
||||
extern int libnbc_iscan_algorithm;
|
||||
|
||||
struct ompi_coll_libnbc_component_t {
|
||||
|
@ -54,6 +54,15 @@ static mca_base_var_enum_value_t iexscan_algorithms[] = {
|
||||
{0, NULL}
|
||||
};
|
||||
|
||||
int libnbc_ireduce_algorithm = 0; /* ireduce user forced algorithm */
|
||||
static mca_base_var_enum_value_t ireduce_algorithms[] = {
|
||||
{0, "ignore"},
|
||||
{1, "chain"},
|
||||
{2, "binomial"},
|
||||
{3, "rabenseifner"},
|
||||
{0, NULL}
|
||||
};
|
||||
|
||||
int libnbc_iscan_algorithm = 0; /* iscan user forced algorithm */
|
||||
static mca_base_var_enum_value_t iscan_algorithms[] = {
|
||||
{0, "ignore"},
|
||||
@ -185,6 +194,16 @@ libnbc_register(void)
|
||||
&libnbc_iexscan_algorithm);
|
||||
OBJ_RELEASE(new_enum);
|
||||
|
||||
libnbc_ireduce_algorithm = 0;
|
||||
(void) mca_base_var_enum_create("coll_libnbc_ireduce_algorithms", ireduce_algorithms, &new_enum);
|
||||
mca_base_component_var_register(&mca_coll_libnbc_component.super.collm_version,
|
||||
"ireduce_algorithm",
|
||||
"Which ireduce algorithm is used: 0 ignore, 1 chain, 2 binomial, 3 rabenseifner",
|
||||
MCA_BASE_VAR_TYPE_INT, new_enum, 0, MCA_BASE_VAR_FLAG_SETTABLE,
|
||||
OPAL_INFO_LVL_5, MCA_BASE_VAR_SCOPE_ALL,
|
||||
&libnbc_ireduce_algorithm);
|
||||
OBJ_RELEASE(new_enum);
|
||||
|
||||
libnbc_iscan_algorithm = 0;
|
||||
(void) mca_base_var_enum_create("coll_libnbc_iscan_algorithms", iscan_algorithms, &new_enum);
|
||||
mca_base_component_var_register(&mca_coll_libnbc_component.super.collm_version,
|
||||
|
@ -20,6 +20,7 @@
|
||||
*/
|
||||
|
||||
#include "opal/include/opal/align.h"
|
||||
#include "opal/util/bit_ops.h"
|
||||
#include "ompi/op/op.h"
|
||||
|
||||
#include "nbc_internal.h"
|
||||
@ -31,6 +32,10 @@ static inline int red_sched_chain (int rank, int p, int root, const void *sendbu
|
||||
|
||||
static inline int red_sched_linear (int rank, int rsize, int root, const void *sendbuf, void *recvbuf, void *tmpbuf, int count, MPI_Datatype datatype,
|
||||
MPI_Op op, NBC_Schedule *schedule);
|
||||
static inline int red_sched_redscat_gather(
|
||||
int rank, int comm_size, int root, const void *sbuf, void *rbuf,
|
||||
char tmpredbuf, int count, MPI_Datatype datatype, MPI_Op op, char inplace,
|
||||
NBC_Schedule *schedule, void *tmp_buf, struct ompi_communicator_t *comm);
|
||||
|
||||
#ifdef NBC_CACHE_SCHEDULE
|
||||
/* tree comparison function for schedule cache */
|
||||
@ -63,7 +68,7 @@ static int nbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Da
|
||||
char *redbuf=NULL, inplace;
|
||||
void *tmpbuf;
|
||||
char tmpredbuf = 0;
|
||||
enum { NBC_RED_BINOMIAL, NBC_RED_CHAIN } alg;
|
||||
enum { NBC_RED_BINOMIAL, NBC_RED_CHAIN, NBC_RED_REDSCAT_GATHER} alg;
|
||||
ompi_coll_libnbc_module_t *libnbc_module = (ompi_coll_libnbc_module_t*) module;
|
||||
ptrdiff_t span, gap;
|
||||
|
||||
@ -98,22 +103,42 @@ static int nbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Da
|
||||
span = opal_datatype_span(&datatype->super, count, &gap);
|
||||
|
||||
/* algorithm selection */
|
||||
if (p > 4 || size * count < 65536 || !ompi_op_is_commute(op)) {
|
||||
alg = NBC_RED_BINOMIAL;
|
||||
if(rank == root) {
|
||||
/* root reduces in receivebuffer */
|
||||
tmpbuf = malloc (span);
|
||||
int nprocs_pof2 = opal_next_poweroftwo(p) >> 1;
|
||||
if (libnbc_ireduce_algorithm == 0) {
|
||||
if (ompi_op_is_commute(op) && p > 2 && count >= nprocs_pof2) {
|
||||
alg = NBC_RED_REDSCAT_GATHER;
|
||||
} else if (p > 4 || size * count < 65536 || !ompi_op_is_commute(op)) {
|
||||
alg = NBC_RED_BINOMIAL;
|
||||
} else {
|
||||
alg = NBC_RED_CHAIN;
|
||||
}
|
||||
} else {
|
||||
if (libnbc_ireduce_algorithm == 1) {
|
||||
alg = NBC_RED_CHAIN;
|
||||
} else if (libnbc_ireduce_algorithm == 2) {
|
||||
alg = NBC_RED_BINOMIAL;
|
||||
} else if (libnbc_ireduce_algorithm == 3 && ompi_op_is_commute(op) && p > 2 && count >= nprocs_pof2) {
|
||||
alg = NBC_RED_REDSCAT_GATHER;
|
||||
} else {
|
||||
alg = NBC_RED_CHAIN;
|
||||
}
|
||||
}
|
||||
|
||||
/* allocate temporary buffers */
|
||||
if (alg == NBC_RED_REDSCAT_GATHER || alg == NBC_RED_BINOMIAL) {
|
||||
if (rank == root) {
|
||||
/* root reduces in receive buffer */
|
||||
tmpbuf = malloc(span);
|
||||
redbuf = recvbuf;
|
||||
} else {
|
||||
/* recvbuf may not be valid on non-root nodes */
|
||||
ptrdiff_t span_align = OPAL_ALIGN(span, datatype->super.align, ptrdiff_t);
|
||||
tmpbuf = malloc (span_align + span);
|
||||
redbuf = (char*)span_align - gap;
|
||||
tmpbuf = malloc(span_align + span);
|
||||
redbuf = (char *)span_align - gap;
|
||||
tmpredbuf = 1;
|
||||
}
|
||||
} else {
|
||||
tmpbuf = malloc (span);
|
||||
alg = NBC_RED_CHAIN;
|
||||
segsize = 16384/2;
|
||||
}
|
||||
|
||||
@ -151,6 +176,9 @@ static int nbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Da
|
||||
case NBC_RED_CHAIN:
|
||||
res = red_sched_chain(rank, p, root, sendbuf, recvbuf, count, datatype, op, ext, size, schedule, tmpbuf, segsize);
|
||||
break;
|
||||
case NBC_RED_REDSCAT_GATHER:
|
||||
res = red_sched_redscat_gather(rank, p, root, sendbuf, redbuf, tmpredbuf, count, datatype, op, inplace, schedule, tmpbuf, comm);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@ -560,6 +588,350 @@ static inline int red_sched_linear (int rank, int rsize, int root, const void *s
|
||||
return OMPI_SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
* red_sched_redscat_gather:
|
||||
*
|
||||
* Description: an implementation of Rabenseifner's Reduce algorithm [1, 2].
|
||||
* [1] Rajeev Thakur, Rolf Rabenseifner and William Gropp.
|
||||
* Optimization of Collective Communication Operations in MPICH //
|
||||
* The Int. Journal of High Performance Computing Applications. Vol 19,
|
||||
* Issue 1, pp. 49--66.
|
||||
* [2] http://www.hlrs.de/mpi/myreduce.html.
|
||||
*
|
||||
* This algorithm is a combination of a reduce-scatter implemented with
|
||||
* recursive vector halving and recursive distance doubling, followed either
|
||||
* by a binomial tree gather.
|
||||
*
|
||||
* Step 1. If the number of processes is not a power of two, reduce it to
|
||||
* the nearest lower power of two (p' = 2^{\floor{\log_2 p}})
|
||||
* by removing r = p - p' extra processes as follows. In the first 2r processes
|
||||
* (ranks 0 to 2r - 1), all the even ranks send the second half of the input
|
||||
* vector to their right neighbor (rank + 1), and all the odd ranks send
|
||||
* the first half of the input vector to their left neighbor (rank - 1).
|
||||
* The even ranks compute the reduction on the first half of the vector and
|
||||
* the odd ranks compute the reduction on the second half. The odd ranks then
|
||||
* send the result to their left neighbors (the even ranks). As a result,
|
||||
* the even ranks among the first 2r processes now contain the reduction with
|
||||
* the input vector on their right neighbors (the odd ranks). These odd ranks
|
||||
* do not participate in the rest of the algorithm, which leaves behind
|
||||
* a power-of-two number of processes. The first r even-ranked processes and
|
||||
* the last p - 2r processes are now renumbered from 0 to p' - 1.
|
||||
*
|
||||
* Step 2. The remaining processes now perform a reduce-scatter by using
|
||||
* recursive vector halving and recursive distance doubling. The even-ranked
|
||||
* processes send the second half of their buffer to rank + 1 and the odd-ranked
|
||||
* processes send the first half of their buffer to rank - 1. All processes
|
||||
* then compute the reduction between the local buffer and the received buffer.
|
||||
* In the next log_2(p') - 1 steps, the buffers are recursively halved, and the
|
||||
* distance is doubled. At the end, each of the p' processes has 1 / p' of the
|
||||
* total reduction result.
|
||||
*
|
||||
* Step 3. A binomial tree gather is performed by using recursive vector
|
||||
* doubling and distance halving. In the non-power-of-two case, if the root
|
||||
* happens to be one of those odd-ranked processes that would normally
|
||||
* be removed in the first step, then the role of this process and process 0
|
||||
* are interchanged.
|
||||
*
|
||||
* Limitations:
|
||||
* count >= 2^{\floor{\log_2 p}}
|
||||
* commutative operations only
|
||||
* intra-communicators only
|
||||
*
|
||||
* Memory requirements (per process):
|
||||
* rank != root: 2 * count * typesize + 4 * \log_2(p) * sizeof(int) = O(count)
|
||||
* rank == root: count * typesize + 4 * \log_2(p) * sizeof(int) = O(count)
|
||||
*
|
||||
* Schedule length (rounds): O(\log(p))
|
||||
* Recommendations: root = 0, otherwise it is required additional steps
|
||||
* in the root process.
|
||||
*/
|
||||
static inline int red_sched_redscat_gather(
|
||||
int rank, int comm_size, int root, const void *sbuf, void *rbuf,
|
||||
char tmpredbuf, int count, MPI_Datatype datatype, MPI_Op op, char inplace,
|
||||
NBC_Schedule *schedule, void *tmp_buf, struct ompi_communicator_t *comm)
|
||||
{
|
||||
int res = OMPI_SUCCESS;
|
||||
int *rindex = NULL, *rcount = NULL, *sindex = NULL, *scount = NULL;
|
||||
|
||||
/* Find nearest power-of-two less than or equal to comm_size */
|
||||
int nsteps = opal_hibit(comm_size, comm->c_cube_dim + 1); /* ilog2(comm_size) */
|
||||
int nprocs_pof2 = 1 << nsteps; /* flp2(comm_size) */
|
||||
|
||||
ptrdiff_t lb, extent;
|
||||
ompi_datatype_get_extent(datatype, &lb, &extent);
|
||||
|
||||
if ((rank != root) || !inplace) {
|
||||
res = NBC_Sched_copy((char *)sbuf, false, count, datatype,
|
||||
rbuf, tmpredbuf, count, datatype, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
}
|
||||
|
||||
/*
|
||||
* Step 1. Reduce the number of processes to the nearest lower power of two
|
||||
* p' = 2^{\floor{\log_2 p}} by removing r = p - p' processes.
|
||||
* 1. In the first 2r processes (ranks 0 to 2r - 1), all the even ranks send
|
||||
* the second half of the input vector to their right neighbor (rank + 1)
|
||||
* and all the odd ranks send the first half of the input vector to their
|
||||
* left neighbor (rank - 1).
|
||||
* 2. All 2r processes compute the reduction on their half.
|
||||
* 3. The odd ranks then send the result to their left neighbors
|
||||
* (the even ranks).
|
||||
*
|
||||
* The even ranks (0 to 2r - 1) now contain the reduction with the input
|
||||
* vector on their right neighbors (the odd ranks). The first r even
|
||||
* processes and the p - 2r last processes are renumbered from
|
||||
* 0 to 2^{\floor{\log_2 p}} - 1. These odd ranks do not participate in the
|
||||
* rest of the algorithm.
|
||||
*/
|
||||
|
||||
int vrank, step, wsize;
|
||||
int nprocs_rem = comm_size - nprocs_pof2;
|
||||
|
||||
if (rank < 2 * nprocs_rem) {
|
||||
int count_lhalf = count / 2;
|
||||
int count_rhalf = count - count_lhalf;
|
||||
|
||||
if (rank % 2 != 0) {
|
||||
/*
|
||||
* Odd process -- exchange with rank - 1
|
||||
* Send the left half of the input vector to the left neighbor,
|
||||
* Recv the right half of the input vector from the left neighbor
|
||||
*/
|
||||
res = NBC_Sched_send(rbuf, tmpredbuf, count_lhalf, datatype, rank - 1,
|
||||
schedule, false);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
res = NBC_Sched_recv((char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
|
||||
false, count_rhalf, datatype, rank - 1, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
res = NBC_Sched_op((char *)tmp_buf + (ptrdiff_t)count_lhalf * extent,
|
||||
false, (char *)rbuf + (ptrdiff_t)count_lhalf * extent,
|
||||
tmpredbuf, count_rhalf, datatype, op, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
/* Send the right half to the left neighbor */
|
||||
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
|
||||
tmpredbuf, count_rhalf, datatype, rank - 1, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
/* This process does not participate in recursive doubling phase */
|
||||
vrank = -1;
|
||||
|
||||
} else {
|
||||
/*
|
||||
* Even process -- exchange with rank + 1
|
||||
* Send the right half of the input vector to the right neighbor,
|
||||
* Recv the left half of the input vector from the right neighbor
|
||||
*/
|
||||
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
|
||||
tmpredbuf, count_rhalf, datatype, rank + 1, schedule, false);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
res = NBC_Sched_recv((char *)tmp_buf, false, count_lhalf, datatype, rank + 1,
|
||||
schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
res = NBC_Sched_op(tmp_buf, false, rbuf, tmpredbuf, count_lhalf,
|
||||
datatype, op, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
/* Recv the right half from the right neighbor */
|
||||
res = NBC_Sched_recv((char *)rbuf + (ptrdiff_t)count_lhalf * extent,
|
||||
tmpredbuf, count_rhalf, datatype, rank + 1, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
vrank = rank / 2;
|
||||
}
|
||||
} else { /* rank >= 2 * nprocs_rem */
|
||||
vrank = rank - nprocs_rem;
|
||||
}
|
||||
|
||||
/*
|
||||
* Step 2. Reduce-scatter implemented with recursive vector halving and
|
||||
* recursive distance doubling. We have p' = 2^{\floor{\log_2 p}}
|
||||
* power-of-two number of processes with new ranks (vrank) and result in rbuf.
|
||||
*
|
||||
* The even-ranked processes send the right half of their buffer to rank + 1
|
||||
* and the odd-ranked processes send the left half of their buffer to
|
||||
* rank - 1. All processes then compute the reduction between the local
|
||||
* buffer and the received buffer. In the next \log_2(p') - 1 steps, the
|
||||
* buffers are recursively halved, and the distance is doubled. At the end,
|
||||
* each of the p' processes has 1 / p' of the total reduction result.
|
||||
*/
|
||||
|
||||
rindex = malloc(sizeof(*rindex) * nsteps); /* O(\log_2(p)) */
|
||||
sindex = malloc(sizeof(*sindex) * nsteps);
|
||||
rcount = malloc(sizeof(*rcount) * nsteps);
|
||||
scount = malloc(sizeof(*scount) * nsteps);
|
||||
if (NULL == rindex || NULL == sindex || NULL == rcount || NULL == scount) {
|
||||
res = OMPI_ERR_OUT_OF_RESOURCE;
|
||||
goto cleanup_and_return;
|
||||
}
|
||||
|
||||
if (vrank != -1) {
|
||||
step = 0;
|
||||
wsize = count;
|
||||
sindex[0] = rindex[0] = 0;
|
||||
|
||||
for (int mask = 1; mask < nprocs_pof2; mask <<= 1) {
|
||||
/*
|
||||
* On each iteration: rindex[step] = sindex[step] -- begining of the
|
||||
* current window. Length of the current window is storded in wsize.
|
||||
*/
|
||||
int vdest = vrank ^ mask;
|
||||
/* Translate vdest virtual rank to real rank */
|
||||
int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
|
||||
|
||||
if (rank < dest) {
|
||||
/*
|
||||
* Recv into the left half of the current window, send the right
|
||||
* half of the window to the peer (perform reduce on the left
|
||||
* half of the current window)
|
||||
*/
|
||||
rcount[step] = wsize / 2;
|
||||
scount[step] = wsize - rcount[step];
|
||||
sindex[step] = rindex[step] + rcount[step];
|
||||
} else {
|
||||
/*
|
||||
* Recv into the right half of the current window, send the left
|
||||
* half of the window to the peer (perform reduce on the right
|
||||
* half of the current window)
|
||||
*/
|
||||
scount[step] = wsize / 2;
|
||||
rcount[step] = wsize - scount[step];
|
||||
rindex[step] = sindex[step] + scount[step];
|
||||
}
|
||||
|
||||
/* Send part of data from the rbuf, recv into the tmp_buf */
|
||||
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
|
||||
tmpredbuf, scount[step], datatype, dest, schedule, false);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
res = NBC_Sched_recv((char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
|
||||
false, rcount[step], datatype, dest, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
/* Local reduce: rbuf[] = tmp_buf[] <op> rbuf[] */
|
||||
res = NBC_Sched_op((char *)tmp_buf + (ptrdiff_t)rindex[step] * extent,
|
||||
false, (char *)rbuf + (ptrdiff_t)rindex[step] * extent,
|
||||
tmpredbuf, rcount[step], datatype, op, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
|
||||
/* Move the current window to the received message */
|
||||
if (step + 1 < nsteps) {
|
||||
rindex[step + 1] = rindex[step];
|
||||
sindex[step + 1] = rindex[step];
|
||||
wsize = rcount[step];
|
||||
step++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Assertion: each process has 1 / p' of the total reduction result:
|
||||
* rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
|
||||
*/
|
||||
|
||||
/*
|
||||
* Setup the root process for gather operation.
|
||||
* Case 1: root < 2r and root is odd -- root process was excluded on step 1
|
||||
* Recv data from process 0, vroot = 0, vrank = 0
|
||||
* Case 2: root < 2r and root is even: vroot = root / 2
|
||||
* Case 3: root >= 2r: vroot = root - r
|
||||
*/
|
||||
int vroot = 0;
|
||||
if (root < 2 * nprocs_rem) {
|
||||
if (root % 2 != 0) {
|
||||
vroot = 0;
|
||||
if (rank == root) {
|
||||
/*
|
||||
* Case 1: root < 2r and root is odd -- root process was
|
||||
* excluded on step 1 (newrank == -1).
|
||||
* Recv a data from the process 0.
|
||||
*/
|
||||
rindex[0] = 0;
|
||||
step = 0, wsize = count;
|
||||
for (int mask = 1; mask < nprocs_pof2; mask *= 2) {
|
||||
rcount[step] = wsize / 2;
|
||||
scount[step] = wsize - rcount[step];
|
||||
rindex[step] = 0;
|
||||
sindex[step] = rcount[step];
|
||||
step++;
|
||||
wsize /= 2;
|
||||
}
|
||||
|
||||
res = NBC_Sched_recv(rbuf, tmpredbuf, rcount[nsteps - 1], datatype,
|
||||
0, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
vrank = 0;
|
||||
|
||||
} else if (vrank == 0) {
|
||||
/* Send a data to the root */
|
||||
res = NBC_Sched_send(rbuf, tmpredbuf, rcount[nsteps - 1], datatype,
|
||||
root, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
vrank = -1;
|
||||
}
|
||||
} else {
|
||||
/* Case 2: root < 2r and a root is even: vroot = root / 2 */
|
||||
vroot = root / 2;
|
||||
}
|
||||
} else {
|
||||
/* Case 3: root >= 2r: newroot = root - r */
|
||||
vroot = root - nprocs_rem;
|
||||
}
|
||||
|
||||
/*
|
||||
* Step 3. Gather result at the vroot by the binomial tree algorithm.
|
||||
* Each process has 1 / p' of the total reduction result:
|
||||
* rcount[nsteps - 1] elements in the rbuf[rindex[nsteps - 1], ...].
|
||||
* All exchanges are executed in reverse order relative
|
||||
* to recursive doubling (previous step).
|
||||
*/
|
||||
|
||||
if (vrank != -1) {
|
||||
int vdest_tree, vroot_tree;
|
||||
step = nsteps - 1; /* step = ilog2(p') - 1 */
|
||||
|
||||
for (int mask = nprocs_pof2 >> 1; mask > 0; mask >>= 1) {
|
||||
int vdest = vrank ^ mask;
|
||||
/* Translate vdest virtual rank to real rank */
|
||||
int dest = (vdest < nprocs_rem) ? vdest * 2 : vdest + nprocs_rem;
|
||||
if ((vdest == 0) && (root < 2 * nprocs_rem) && (root % 2 != 0))
|
||||
dest = root;
|
||||
|
||||
vdest_tree = vdest >> step;
|
||||
vdest_tree <<= step;
|
||||
vroot_tree = vroot >> step;
|
||||
vroot_tree <<= step;
|
||||
if (vdest_tree == vroot_tree) {
|
||||
/* Send data from rbuf and exit */
|
||||
|
||||
res = NBC_Sched_send((char *)rbuf + (ptrdiff_t)rindex[step] * extent,
|
||||
tmpredbuf, rcount[step], datatype, dest, schedule, false);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
break;
|
||||
} else {
|
||||
/* Recv and continue */
|
||||
res = NBC_Sched_recv((char *)rbuf + (ptrdiff_t)sindex[step] * extent,
|
||||
tmpredbuf, scount[step], datatype, dest, schedule, true);
|
||||
if (OPAL_UNLIKELY(OMPI_SUCCESS != res)) { goto cleanup_and_return; }
|
||||
}
|
||||
step--;
|
||||
}
|
||||
}
|
||||
|
||||
cleanup_and_return:
|
||||
if (NULL != rindex)
|
||||
free(rindex);
|
||||
if (NULL != sindex)
|
||||
free(sindex);
|
||||
if (NULL != rcount)
|
||||
free(rcount);
|
||||
if (NULL != scount)
|
||||
free(scount);
|
||||
return res;
|
||||
}
|
||||
|
||||
int ompi_coll_libnbc_reduce_init(const void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,
|
||||
MPI_Op op, int root, struct ompi_communicator_t *comm, MPI_Info info, ompi_request_t ** request,
|
||||
struct mca_coll_base_module_2_3_0_t *module) {
|
||||
|
Загрузка…
x
Ссылка в новой задаче
Block a user