1
1

Adding a new class which is a red black tree

-reviewed by Tim
adding a small test program for the tree

This commit was SVN r1437.
Этот коммит содержится в:
Tim Prins 2004-06-22 20:52:18 +00:00
родитель 21ada98b99
Коммит 48f51861d3
5 изменённых файлов: 921 добавлений и 4 удалений

Просмотреть файл

@ -16,7 +16,8 @@ headers = \
ompi_list.h \
ompi_object.h \
ompi_pointer_array.h \
ompi_value_array.h
ompi_value_array.h \
ompi_rb_tree.h
liblfc_la_SOURCES = \
$(headers) \
@ -26,7 +27,8 @@ liblfc_la_SOURCES = \
ompi_object.c \
ompi_pointer_array.c \
ompi_bitmap.c \
ompi_value_array.c
ompi_value_array.c \
ompi_rb_tree.c
# Conditionally install the header files

547
src/class/ompi_rb_tree.c Обычный файл
Просмотреть файл

@ -0,0 +1,547 @@
/*
* $HEADER$
*/
/*
* @file
*/
#include "class/ompi_rb_tree.h"
/* declare the instance of the classes */
OBJ_CLASS_INSTANCE(ompi_rb_tree_node_t, ompi_list_item_t, NULL, NULL);
OBJ_CLASS_INSTANCE(ompi_rb_tree_t, ompi_object_t, ompi_rb_tree_construct,
ompi_rb_tree_destruct);
/* Private functions */
static void btree_insert(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * node);
static void btree_delete_fixup(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * x);
static ompi_rb_tree_node_t * btree_successor(ompi_rb_tree_t * tree,
ompi_rb_tree_node_t * node);
static ompi_rb_tree_node_t * ompi_rb_tree_find_node(ompi_rb_tree_t *tree, void *key);
static void left_rotate(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * x);
static void right_rotate(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * x);
static void inorder_destroy(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * node);
static void inorder_traversal(ompi_rb_tree_t *tree,
ompi_rb_tree_condition_fn_t cond,
ompi_rb_tree_action_fn_t action,
ompi_rb_tree_node_t * node);
/* constructor */
void ompi_rb_tree_construct(ompi_object_t * object)
{
ompi_rb_tree_t * tree = (ompi_rb_tree_t *) object;
OBJ_CONSTRUCT(&(tree->free_list), ompi_free_list_t);
ompi_free_list_init(&(tree->free_list), sizeof(ompi_rb_tree_node_t),
OBJ_CLASS(ompi_rb_tree_node_t),
0, -1 , 128, NULL);
}
/* the destructor function */
void ompi_rb_tree_destruct(ompi_object_t * object)
{
ompi_rb_tree_destroy((ompi_rb_tree_t *) object);
OBJ_DESTRUCT(&(((ompi_rb_tree_t *)object)->free_list));
return;
}
/* Create the tree */
int ompi_rb_tree_init(ompi_rb_tree_t * tree,
ompi_rb_tree_comp_fn_t comp)
{
int rc;
ompi_list_item_t * node;
/* we need to get memory for the root pointer from the free list */
OMPI_FREE_LIST_GET(&(tree->free_list), node, rc);
tree->root_ptr = (ompi_rb_tree_node_t *) node;
if (OMPI_SUCCESS != rc) {
return rc;
}
OMPI_FREE_LIST_GET(&(tree->free_list), node, rc);
if (OMPI_SUCCESS != rc) {
return rc;
}
tree->nill = (ompi_rb_tree_node_t *) node;
/* initialize tree->nill */
tree->nill->color = BLACK;
tree->nill->left = tree->nill;
tree->nill->right = tree->nill;
tree->nill->parent = tree->nill;
/* initialize the 'root' pointer */
tree->root_ptr->left = tree->nill;
tree->root_ptr->right = tree->nill;
tree->root_ptr->parent = tree->nill;
tree->root_ptr->color = BLACK;
tree->comp = comp;
/* set the tree size to zero */
tree->tree_size = 0;
return(OMPI_SUCCESS);
}
/* This inserts a node into the tree based on the passed values. */
int ompi_rb_tree_insert(ompi_rb_tree_t *tree, void * key, void * value)
{
ompi_rb_tree_node_t * y;
ompi_rb_tree_node_t * node;
ompi_list_item_t * item;
int rc;
/* get the memory for a node */
OMPI_FREE_LIST_GET(&(tree->free_list), item, rc);
if (OMPI_SUCCESS != rc) {
return rc;
}
node = (ompi_rb_tree_node_t *) item;
/* insert the data into the node */
node->key = key;
node->value = value;
/* insert the node into the tree */
btree_insert(tree, node);
/*do the rotations */
/* usually one would have to check for NULL, but because of the sentinal,
* we don't have to */
while (node->parent->color == RED) {
if (node->parent == node->parent->parent->left) {
y = node->parent->parent->right;
if (y->color == RED) {
node->parent->color = BLACK;
y->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
left_rotate(tree, node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
right_rotate(tree, node->parent->parent);
}
} else {
y = node->parent->parent->left;
if (y->color == RED) {
node->parent->color = BLACK;
y->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
right_rotate(tree, node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
left_rotate(tree, node->parent->parent);
}
}
}
/* after the rotations the root is black */
tree->root_ptr->left->color = BLACK;
return OMPI_SUCCESS;
}
/* Finds the node in the tree based on the key */
void * ompi_rb_tree_find(ompi_rb_tree_t *tree, void *key)
{
ompi_rb_tree_node_t * node;
int compvalue;
node = tree->root_ptr->left;
while (node != tree->nill) {
compvalue = tree->comp(key, node->key);
/* if the result of the comparison function is 0, we found it */
if (compvalue == 0) {
return(node->value);
}
/* else if it is less than 0, go left, else right */
(compvalue < 0) ? (node = node->left) : (node = node->right);
}
/* if we didn't find anything, return NULL */
return(NULL);
}
/* Finds the node in the tree based on the key and returns a pointer
* to the node. This is a bit a code duplication, but this has to be fast
* so we go ahead with the duplication */
ompi_rb_tree_node_t * ompi_rb_tree_find_node(ompi_rb_tree_t *tree, void *key)
{
ompi_rb_tree_node_t * node;
int compvalue;
node = tree->root_ptr->left;
while (node != tree->nill) {
compvalue = tree->comp(key, node->key);
/* if the result of the comparison function is 0, we found it */
if (compvalue == 0) {
return(node);
}
/* else if it is less than 0, go left, else right */
(compvalue < 0) ? (node = node->left) : (node = node->right);
}
/* if we didn't find anything, return NULL */
return(NULL);
}
/* Delete a node from the tree based on the key */
int ompi_rb_tree_delete(ompi_rb_tree_t *tree, void *key)
{
ompi_rb_tree_node_t * p;
ompi_rb_tree_node_t * todelete;
ompi_rb_tree_node_t * y;
ompi_list_item_t * item;
p = ompi_rb_tree_find_node(tree, key);
if (NULL == p) {
return(OMPI_ERR_NOT_FOUND);
}
if ((p->left == tree->nill) || (p->right == tree->nill)) {
todelete = p;
} else {
todelete = btree_successor(tree, p);
}
if (todelete->left == tree->nill) {
y = todelete->right;
} else {
y = todelete->left;
}
y->parent = todelete->parent;
if (y->parent == tree->root_ptr) {
tree->root_ptr->left = y;
} else {
if (todelete == todelete->parent->left) {
todelete->parent->left = y;
} else {
todelete->parent->right = y;
}
}
if (todelete != p) {
p->key = todelete->key;
p->value = todelete->value;
}
if (todelete->color == BLACK) {
btree_delete_fixup(tree, y);
}
item = (ompi_list_item_t *) todelete;
OMPI_FREE_LIST_RETURN(&(tree->free_list), item);
--tree->tree_size;
return(OMPI_SUCCESS);
}
/* Destroy the hashmap */
int ompi_rb_tree_destroy(ompi_rb_tree_t *tree)
{
ompi_list_item_t * item;
/* Recursive inorder traversal for delete */
inorder_destroy(tree, tree->root_ptr);
/* Now free the root -- root does not get free'd in the above
* inorder destroy */
item = (ompi_list_item_t *) tree->root_ptr;
OMPI_FREE_LIST_RETURN(&(tree->free_list), item);
--tree->tree_size;
/* free the tree->nill node */
item = (ompi_list_item_t *) tree->nill;
OMPI_FREE_LIST_RETURN(&(tree->free_list), item);
return(OMPI_SUCCESS);
}
/* Find the next inorder successor of a node */
ompi_rb_tree_node_t * btree_successor(ompi_rb_tree_t * tree, ompi_rb_tree_node_t * node)
{
ompi_rb_tree_node_t * p;
if (node->right == tree->nill) {
p = node->parent;
while (node == p->right) {
node = p;
p = p->parent;
}
if(p == tree->root_ptr) {
return(tree->nill);
}
return p;
}
p = node->right;
while(p->left != tree->nill) {
p = p->left;
}
return p;
}
/* Insert an element in the normal binary search tree fashion */
/* this function goes through the tree and finds the leaf where
* the node will be inserted */
void btree_insert(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * node)
{
ompi_rb_tree_node_t * parent = tree->root_ptr;
ompi_rb_tree_node_t * n = parent->left; /* the real root of the tree */
/* set up initial values for the node */
node->color = RED;
node->parent = NULL;
node->left = tree->nill;
node->right = tree->nill;
/* find the leaf where we will insert the node */
while (n != tree->nill) {
parent = n;
(tree->comp(node->key, n->key) <= 0) ? (n = n->left) : (n = n->right);
}
/* place it on either the left or the right */
if((parent == tree->root_ptr) || (tree->comp(node->key, parent->key) <= 0)) {
parent->left = node;
} else {
parent->right = node;
}
/* set its parent and children */
node->parent = parent;
node->left = tree->nill;
node->right = tree->nill;
++(tree->tree_size);
return;
}
/* Fixup the balance of the btree after deletion */
void btree_delete_fixup(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * x)
{
ompi_rb_tree_node_t * w;
ompi_rb_tree_node_t * root = tree->root_ptr->left;
while ((x != root) && (x->color == BLACK)) {
if (x == x->parent->left) {
w = x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
left_rotate(tree, x->parent);
w = x->parent->right;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
right_rotate(tree, w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
left_rotate(tree, x->parent);
x = root;
}
} else { /* right */
w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
right_rotate(tree, x->parent);
w = x->parent->left;
}
if ((w->right->color == BLACK) && (w->left->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
left_rotate(tree, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
right_rotate(tree, x->parent);
x = root;
}
}
}
x->color = BLACK;
return;
}
/* Free the nodes in inorder fashion */
void
inorder_destroy(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * node)
{
ompi_list_item_t * item;
if (node == tree->nill) {
return;
}
inorder_destroy(tree, node->left);
--tree->tree_size;
if (node->left != tree->nill) {
item = (ompi_list_item_t *) node->left;
--tree->tree_size;
OMPI_FREE_LIST_RETURN(&(tree->free_list), item);
}
inorder_destroy(tree, node->right);
if (node->right != tree->nill) {
item = (ompi_list_item_t *) node->right;
--tree->tree_size;
OMPI_FREE_LIST_RETURN(&(tree->free_list), item);
}
}
/* Try to access all the elements of the hashmap conditionally */
int ompi_rb_tree_traverse(ompi_rb_tree_t *tree,
ompi_rb_tree_condition_fn_t cond,
ompi_rb_tree_action_fn_t action)
{
if ((cond == NULL) || (action == NULL)) {
return(OMPI_ERROR);
}
inorder_traversal(tree, cond, action, tree->root_ptr->left);
return(OMPI_SUCCESS);
}
static void inorder_traversal(ompi_rb_tree_t *tree,
ompi_rb_tree_condition_fn_t cond,
ompi_rb_tree_action_fn_t action,
ompi_rb_tree_node_t * node)
{
if (node == tree->nill) {
return;
}
inorder_traversal(tree, cond, action, node->left);
if (cond(node->value)) {
action(node->key, node->value);
}
inorder_traversal(tree, cond, action, node->right);
}
/* Left rotate the tree */
/* basically what we want to do is to make x be the left child
* of its right child */
void left_rotate(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * x)
{
ompi_rb_tree_node_t * y;
y = x->right;
/* make the left child of y's parent be x if it is not the sentinal node*/
if (y->left != tree->nill) {
y->left->parent=x;
}
/* normlly we would have to check to see if we are at the root.
* however, the root sentinal takes care of it for us */
if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
/* the old parent of x is now y's parent */
y->parent = x->parent;
/* x's parent is y */
x->parent = y;
x->right = y->left;
y->left = x;
return;
}
/* Right rotate the tree */
/* basically what we want to do is to make x be the right child
* of its left child */
void right_rotate(ompi_rb_tree_t *tree, ompi_rb_tree_node_t * x)
{
ompi_rb_tree_node_t * y;
y = x->left;
if(y->right != tree->nill) {
y->right->parent = y;
}
if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->parent = x->parent;
x->parent = y;
x->left = y->right;
y->right = x;
return;
}
/* returns the size of the tree */
int ompi_rb_tree_size(ompi_rb_tree_t *tree)
{
return(tree->tree_size);
}
/* below are a couple of debugging functions */
#if 0
#include <stdio.h>
static void inorder(ompi_rb_tree_t * tree, ompi_rb_tree_node_t * node);
static void print_inorder(ompi_rb_tree_t * tree);
void inorder(ompi_rb_tree_t * tree, ompi_rb_tree_node_t * node)
{
static int level = 0;
if (node == tree->nill) {
printf("nill\n");
return;
}
level++;
inorder(tree, node->left);
level--;
printf("%d, level: %d\n", *((int *)node->value), level);
level++;
inorder(tree, node->right);
level--;
}
void print_inorder(ompi_rb_tree_t *tree)
{
inorder(tree, tree->root_ptr->left);
}
#endif

186
src/class/ompi_rb_tree.h Обычный файл
Просмотреть файл

@ -0,0 +1,186 @@
/*
* $HEADER$
*
*/
/** @file
*
* A red black tree
*/
#ifndef OMPI_RB_TREE_H
#define OMPI_RB_TREE_H
#include <stdlib.h>
#include "include/constants.h"
#include "class/ompi_object.h"
#include "class/ompi_free_list.h"
/*
* Data structures and datatypes
*/
/**
* red and black enum
*/
typedef enum {RED, BLACK} ompi_rb_tree_nodecolor_t;
/**
* node data structure
*/
struct ompi_rb_tree_node_t
{
ompi_list_item_t super; /**< the parent class */
ompi_rb_tree_nodecolor_t color; /**< the node color */
struct ompi_rb_tree_node_t * parent;/**< the parent node, can be NULL */
struct ompi_rb_tree_node_t * left; /**< the left child - can be nill */
struct ompi_rb_tree_node_t * right; /**< the right child - can be nill */
void *key; /**< a pointer to the key */
void *value; /**< a pointer to the value */
};
typedef struct ompi_rb_tree_node_t ompi_rb_tree_node_t;
/**
* the compare function typedef. This function is used to compare 2 nodes.
*/
typedef int (*ompi_rb_tree_comp_fn_t)(void *key1, void *key2);
/**
* the data structure that holds all the needed information about the tree.
*/
struct ompi_rb_tree_t {
ompi_object_t parent; /**< the parent class */
/* this root pointer doesn't actually point to the root of the tree.
* rather, it points to a sentinal node who's left branch is the real
* root of the tree. This is done to eliminate special cases */
ompi_rb_tree_node_t * root_ptr;/**< a pointer to the root of the tree */
ompi_rb_tree_node_t * nill; /**< the nill sentinal node */
ompi_rb_tree_comp_fn_t comp; /**< the compare function */
ompi_free_list_t free_list; /**< the free list to get the memory from */
size_t tree_size; /**< the size of the tree */
};
typedef struct ompi_rb_tree_t ompi_rb_tree_t;
/** declare the tree node as a class */
OBJ_CLASS_DECLARATION(ompi_rb_tree_node_t);
/** declare the tree as a class */
OBJ_CLASS_DECLARATION(ompi_rb_tree_t);
/* Function pointers for map traversal function */
/**
* this function is used for the ompi_rb_tree_traverse function.
* it is passed a pointer to the value for each node and, if it returns
* a one, the action function is called on that node. Otherwise, the node is ignored.
*/
typedef int (*ompi_rb_tree_condition_fn_t)(void *);
/**
* this function is uused for the user to perform any action on the passed
* values. The first argument is the key and the second is the value.
* note that this function SHOULD NOT modify the keys, as that would
* mess up the tree.
*/
typedef void (*ompi_rb_tree_action_fn_t)(void *, void *);
/*
* Public function protoypes
*/
/**
* the construct function. creates the free list to get the nodes from
*
* @param object the tree that is to be used
*
* @retval NONE
*/
void ompi_rb_tree_construct(ompi_object_t * object);
/**
* the destruct function. tries to free the tree and destroys the free list
*
* @param object the tree object
*/
void ompi_rb_tree_destruct(ompi_object_t * object);
/**
* the function creates a new tree
*
* @param tree a pointer to an allocated area of memory for the main
* tree data structure.
* @param comp a pointer to the function to use for comaparing 2 nodes
*
* @retval OMPI_SUCCESS if it is successful
* @retval OMPI_ERR_TEMP_OUT_OF_RESOURCE if unsuccessful
*/
int ompi_rb_tree_init(ompi_rb_tree_t * tree, ompi_rb_tree_comp_fn_t comp);
/**
* inserts a node into the tree
*
* @param tree a pointer to the tree data structure
* @param key the key for the node
* @param value the value for the node
*
* @retval OMPI_SUCCESS
* @retval OMPI_ERR_TEMP_OUT_OF_RESOURCE if unsuccessful
*/
int ompi_rb_tree_insert(ompi_rb_tree_t *tree, void * key, void * value);
/**
* finds a value in the tree based on the passed key
*
* @param tree a pointer to the tree data structure
* @param key a pointer to the key
*
* @retval pointer to the value if found
* @retval NULL if not found
*/
void * ompi_rb_tree_find(ompi_rb_tree_t *tree, void *key);
/**
* deletes a node based on its key
*
* @param tree a pointer to the tree data structure
* @param key a pointer to the key
*
* @retval OMPI_SUCCESS if the node is found and deleted
* @retval OMPI_ERR_NOT_FOUND if the node is not found
*/
int ompi_rb_tree_delete(ompi_rb_tree_t *tree, void *key);
/**
* frees all the nodes on the tree
*
* @param tree a pointer to the tree data structure
*
* @retval OMPI_SUCCESS
*/
int ompi_rb_tree_destroy(ompi_rb_tree_t *tree);
/**
* traverses the entire tree, performing the cond function on each of the
* values and if it returns one it performs the action function on the values
*
* @param tree a pointer to the tree
* @param cond a pointer to the condition function
* @param action a pointer to the action function
*
* @retval OMPI_SUCCESS
* @retval OMPI_FAILURE if there is an error
*/
int ompi_rb_tree_traverse(ompi_rb_tree_t *tree,
ompi_rb_tree_condition_fn_t cond,
ompi_rb_tree_action_fn_t action);
/**
* returns the size of the tree
*
* @param tree a pointer to the tree data structure
*
* @retval int the nuber of items on the tree
*/
int ompi_rb_tree_size(ompi_rb_tree_t *tree);
#endif /* OMPI_RB_TREE_H */

Просмотреть файл

@ -11,7 +11,8 @@ noinst_PROGRAMS = \
ompi_hash_table \
ompi_list \
ompi_value_array \
ompi_pointer_array
ompi_pointer_array \
ompi_rb_tree
ompi_bitmap_SOURCES = ompi_bitmap.c
ompi_bitmap_LDADD = \
@ -76,4 +77,16 @@ ompi_value_array_LDADD = \
$(top_builddir)/test/support/libsupport.la
ompi_value_array_DEPENDENCIES = $(ompi_value_array_LDADD)
ompi_rb_tree_SOURCES = ompi_rb_tree.c
ompi_rb_tree_LDADD = \
$(top_builddir)/test/support/libsupport.la \
$(top_builddir)/src/class/ompi_free_list.lo \
$(top_builddir)/src/class/ompi_rb_tree.lo \
$(top_builddir)/src/class/ompi_object.lo \
$(top_builddir)/src/class/ompi_list.lo \
$(top_builddir)/src/threads/mutex.lo \
$(top_builddir)/src/threads/mutex_pthread.lo \
$(top_builddir)/src/threads/mutex_spinlock.lo \
$(top_builddir)/src/util/output.lo \
$(top_builddir)/src/util/malloc.lo
ompi_rb_tree_DEPENDENCIES = $(ompi_rb_tree_LDADD)

169
test/class/ompi_rb_tree.c Обычный файл
Просмотреть файл

@ -0,0 +1,169 @@
/*
* $HEADER$
*/
#include <stdint.h>
#include <string.h>
#include "support.h"
#include "class/ompi_rb_tree.h"
int keys[] = {
0, 1, 2, 3, 4, 5, 6, 7
};
int values[] = {
10, 11, 12, 13, 14, 15, 16, 17
};
int comp_fn(void * ele1, void * ele2);
void test1(void);
int comp_fn(void * ele1, void * ele2)
{
if(*((int *) ele1) > *((int *) ele2)) {
return(1);
}
if(*((int *) ele1) < *((int *) ele2)) {
return(-1);
}
return(0);
}
void test1(void)
{
ompi_rb_tree_t tree;
int rc;
void * result;
OBJ_CONSTRUCT(&tree, ompi_rb_tree_t);
rc = ompi_rb_tree_init(&tree, comp_fn);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly initialize the tree");
}
rc = ompi_rb_tree_insert(&tree, &keys[0], &values[0]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[0]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[0], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[1], &values[1]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[1]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[1], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[2], &values[2]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[2]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[2], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[3], &values[3]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[3]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[3], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[4], &values[4]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[4]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[4], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[5], &values[5]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[5]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[5], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[6], &values[6]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[6]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[6], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_insert(&tree, &keys[7], &values[7]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly insert a new node");
}
result = ompi_rb_tree_find(&tree, &keys[7]);
if(NULL == result) {
test_failure("lookup returned null!");
}
if(!test_verify_int(values[7], *((int *) result))) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_size(&tree);
if(!test_verify_int(8, rc)) {
test_failure("failed to properly insert a new node");
}
rc = ompi_rb_tree_delete(&tree, &keys[0]);
if(!test_verify_int(OMPI_SUCCESS, rc)) {
test_failure("failed to properly delete a node");
}
result = ompi_rb_tree_find(&tree, &keys[0]);
if(NULL != result) {
test_failure("lookup returned a value instead of null!");
} else {
test_success();
}
OBJ_DESTRUCT(&tree);
}
int main(int argc, char **argv)
{
/* local variables */
test_init("ompi_rb_tree_t");
test1();
return test_finalize();
}