1
1

1605 строки
54 KiB
C
Исходник Обычный вид История

/* -*- C -*-
*
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006 Cisco Systems, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "orte_config.h"
#include <stdio.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#include <errno.h>
#include <signal.h>
#include <ctype.h>
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif /* HAVE_SYS_TYPES_H */
#ifdef HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif /* HAVE_SYS_WAIT_H */
#ifdef HAVE_LIBGEN_H
#include <libgen.h>
#endif
#include "opal/event/event.h"
#include "opal/install_dirs.h"
#include "opal/mca/base/base.h"
#include "opal/threads/condition.h"
#include "opal/util/argv.h"
#include "opal/util/basename.h"
#include "opal/util/cmd_line.h"
#include "opal/util/opal_environ.h"
#include "opal/util/output.h"
#include "opal/util/show_help.h"
#include "opal/util/trace.h"
#include "opal/version.h"
#include "orte/orte_constants.h"
#include "orte/class/orte_pointer_array.h"
#include "orte/util/proc_info.h"
#include "orte/util/sys_info.h"
#include "orte/util/universe_setup_file_io.h"
#include "orte/util/pre_condition_transports.h"
#include "orte/mca/ns/ns.h"
#include "orte/mca/gpr/gpr.h"
#include "orte/mca/pls/pls.h"
#include "orte/mca/rmgr/rmgr.h"
#include "orte/mca/schema/schema.h"
#include "orte/mca/smr/smr.h"
#include "orte/mca/errmgr/errmgr.h"
#include "orte/runtime/runtime.h"
#include "orte/runtime/orte_wait.h"
#include "orterun.h"
#include "totalview.h"
/*
* Globals
*/
static struct opal_event term_handler;
static struct opal_event int_handler;
#ifndef __WINDOWS__
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
static struct opal_event sigusr1_handler;
static struct opal_event sigusr2_handler;
#endif /* __WINDOWS__ */
static orte_jobid_t jobid = ORTE_JOBID_MAX;
static orte_pointer_array_t *apps_pa;
static bool wait_for_job_completion = true;
static char *orterun_basename = NULL;
static int max_display_aborted = 1;
static int num_aborted = 0;
static int num_killed = 0;
static char **global_mca_env = NULL;
static bool have_zero_np = false;
static orte_std_cntr_t total_num_apps = 0;
static bool want_prefix_by_default = (bool) ORTE_WANT_ORTERUN_PREFIX_BY_DEFAULT;
/*
* setup globals for catching orterun command line options
*/
struct globals_t {
bool help;
bool version;
bool verbose;
bool quiet;
bool exit;
bool no_wait_for_job_completion;
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
bool by_node;
bool by_slot;
bool no_oversubscribe;
bool debugger;
bool no_local_schedule;
orte_std_cntr_t num_procs;
int exit_status;
char *hostfile;
char *env_val;
char *appfile;
char *wdir;
char *path;
opal_mutex_t lock;
opal_condition_t cond;
} orterun_globals;
static bool globals_init = false;
struct proc_info_t {
bool reported;
int32_t exit_status;
};
struct proc_info_t *proc_infos = NULL;
opal_cmd_line_init_t cmd_line_init[] = {
/* Various "obvious" options */
{ NULL, NULL, NULL, 'h', NULL, "help", 0,
&orterun_globals.help, OPAL_CMD_LINE_TYPE_BOOL,
"This help message" },
{ NULL, NULL, NULL, 'V', NULL, "version", 0,
&orterun_globals.version, OPAL_CMD_LINE_TYPE_BOOL,
"Print version and exit" },
{ NULL, NULL, NULL, 'v', NULL, "verbose", 0,
&orterun_globals.verbose, OPAL_CMD_LINE_TYPE_BOOL,
"Be verbose" },
{ NULL, NULL, NULL, 'q', NULL, "quiet", 0,
&orterun_globals.quiet, OPAL_CMD_LINE_TYPE_BOOL,
"Suppress helpful messages" },
/* Use an appfile */
{ NULL, NULL, NULL, '\0', NULL, "app", 1,
&orterun_globals.appfile, OPAL_CMD_LINE_TYPE_STRING,
"Provide an appfile; ignore all other command line options" },
/* Number of processes; -c, -n, --n, -np, and --np are all
synonyms */
{ NULL, NULL, NULL, 'c', "np", "np", 1,
&orterun_globals.num_procs, OPAL_CMD_LINE_TYPE_SIZE_T,
"Number of processes to run" },
{ NULL, NULL, NULL, '\0', "n", "n", 1,
&orterun_globals.num_procs, OPAL_CMD_LINE_TYPE_SIZE_T,
"Number of processes to run" },
/* Set a hostfile */
{ "rds", "hostfile", "path", '\0', "hostfile", "hostfile", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Provide a hostfile" },
{ "rds", "hostfile", "path", '\0', "machinefile", "machinefile", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Provide a hostfile" },
/* Don't wait for the process to finish before exiting */
{ NULL, NULL, NULL, '\0', "nw", "nw", 0,
&orterun_globals.no_wait_for_job_completion, OPAL_CMD_LINE_TYPE_BOOL,
"Launch the processes and do not wait for their completion (i.e., let orterun complete as soon a successful launch occurs)" },
/* Set the max number of aborted processes to show */
{ NULL, NULL, NULL, '\0', "aborted", "aborted", 1,
&max_display_aborted, OPAL_CMD_LINE_TYPE_INT,
"The maximum number of aborted processes to display" },
/* Export environment variables; potentially used multiple times,
so it does not make sense to set into a variable */
{ NULL, NULL, NULL, 'x', NULL, NULL, 1,
NULL, OPAL_CMD_LINE_TYPE_NULL,
"Export an environment variable, optionally specifying a value (e.g., \"-x foo\" exports the environment variable foo and takes its value from the current environment; \"-x foo=bar\" exports the environment variable name foo and sets its value to \"bar\" in the started processes)" },
/* Specific mapping (C, cX, N, nX) */
#if 0
/* JJH --map is not currently implemented so don't advertise it until it is */
{ NULL, NULL, NULL, '\0', NULL, "map", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Mapping of processes to nodes / CPUs" },
#endif
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
{ NULL, NULL, NULL, '\0', "bynode", "bynode", 0,
&orterun_globals.by_node, OPAL_CMD_LINE_TYPE_BOOL,
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
"Whether to allocate/map processes round-robin by node" },
{ NULL, NULL, NULL, '\0', "byslot", "byslot", 0,
&orterun_globals.by_slot, OPAL_CMD_LINE_TYPE_BOOL,
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
"Whether to allocate/map processes round-robin by slot (the default)" },
{ NULL, NULL, NULL, '\0', "nooversubscribe", "nooversubscribe", 0,
&orterun_globals.no_oversubscribe, OPAL_CMD_LINE_TYPE_BOOL,
"Nodes are not to be oversubscribed, even if the system supports such operation"},
/* mpiexec-like arguments */
{ NULL, NULL, NULL, '\0', "wdir", "wdir", 1,
&orterun_globals.wdir, OPAL_CMD_LINE_TYPE_STRING,
"Set the working directory of the started processes" },
{ NULL, NULL, NULL, '\0', "path", "path", 1,
&orterun_globals.path, OPAL_CMD_LINE_TYPE_STRING,
"PATH to be used to look for executables to start processes" },
/* These arguments can be specified multiple times */
#if 0
/* JMS: Removed because it's not really implemented */
{ NULL, NULL, NULL, '\0', "arch", "arch", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Architecture to start processes on" },
#endif
{ NULL, NULL, NULL, 'H', "host", "host", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"List of hosts to invoke processes on" },
/* OSC mpiexec-like arguments */
{ NULL, NULL, NULL, '\0', "nolocal", "nolocal", 0,
&orterun_globals.no_local_schedule, OPAL_CMD_LINE_TYPE_BOOL,
"Do not run any MPI applications on the local node" },
/* User-level debugger arguments */
{ NULL, NULL, NULL, '\0', "tv", "tv", 0,
&orterun_globals.debugger, OPAL_CMD_LINE_TYPE_BOOL,
"Deprecated backwards compatibility flag; synonym for \"--debug\"" },
{ NULL, NULL, NULL, '\0', "debug", "debug", 0,
&orterun_globals.debugger, OPAL_CMD_LINE_TYPE_BOOL,
"Invoke the user-level debugger indicated by the orte_base_user_debugger MCA parameter" },
{ "orte", "base", "user_debugger", '\0', "debugger", "debugger", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Sequence of debuggers to search for when \"--debug\" is used" },
/* OpenRTE arguments */
{ "orte", "debug", NULL, 'd', NULL, "debug-devel", 0,
NULL, OPAL_CMD_LINE_TYPE_BOOL,
"Enable debugging of OpenRTE" },
{ "orte", "debug", "daemons", '\0', NULL, "debug-daemons", 0,
NULL, OPAL_CMD_LINE_TYPE_INT,
"Enable debugging of any OpenRTE daemons used by this application" },
{ "orte", "debug", "daemons_file", '\0', NULL, "debug-daemons-file", 0,
NULL, OPAL_CMD_LINE_TYPE_BOOL,
"Enable debugging of any OpenRTE daemons used by this application, storing output in files" },
{ "orte", "no_daemonize", NULL, '\0', NULL, "no-daemonize", 0,
NULL, OPAL_CMD_LINE_TYPE_BOOL,
"Do not detach OpenRTE daemons used by this application" },
{ "universe", NULL, NULL, '\0', NULL, "universe", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Set the universe name as username@hostname:universe_name for this application" },
{ NULL, NULL, NULL, '\0', NULL, "tmpdir", 1,
&orte_process_info.tmpdir_base, OPAL_CMD_LINE_TYPE_STRING,
"Set the root for the session directory tree for orterun ONLY" },
{ NULL, NULL, NULL, '\0', NULL, "prefix", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Prefix where Open MPI is installed on remote nodes" },
{ NULL, NULL, NULL, '\0', NULL, "noprefix", 1,
NULL, OPAL_CMD_LINE_TYPE_STRING,
"Disable automatic --prefix behavior" },
/* End of list */
{ NULL, NULL, NULL, '\0', NULL, NULL, 0,
NULL, OPAL_CMD_LINE_TYPE_NULL, NULL }
};
#if !defined(__WINDOWS__)
extern char** environ;
#endif /* !defined(__WINDOWS__) */
/*
* Local functions
*/
static void exit_callback(int fd, short event, void *arg);
static void abort_signal_callback(int fd, short event, void *arg);
static void signal_forward_callback(int fd, short event, void *arg);
static int create_app(int argc, char* argv[], orte_app_context_t **app,
bool *made_app, char ***app_env);
static int init_globals(void);
static int parse_globals(int argc, char* argv[]);
static int parse_locals(int argc, char* argv[]);
static int parse_appfile(char *filename, char ***env);
static void job_state_callback(orte_jobid_t jobid, orte_proc_state_t state);
static void dump_aborted_procs(orte_jobid_t jobid);
int orterun(int argc, char *argv[])
{
orte_app_context_t **apps;
int rc, i, num_apps, array_size, j;
int id, iparam;
orte_proc_state_t cb_states;
orte_job_state_t exit_state;
/* Setup MCA params */
mca_base_param_init();
orte_register_params(false);
/* find our basename (the name of the executable) so that we can
use it in pretty-print error messages */
orterun_basename = opal_basename(argv[0]);
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
/* Check for some "global" command line params */
parse_globals(argc, argv);
/* If we're still here, parse each app */
parse_locals(argc, argv);
/* Convert the list of apps to an array of orte_app_context_t
pointers */
array_size = orte_pointer_array_get_size(apps_pa);
apps = (orte_app_context_t**)malloc(sizeof(orte_app_context_t *) * array_size);
if (NULL == apps) {
opal_show_help("help-orterun.txt", "orterun:call-failed",
true, orterun_basename, "system", "malloc returned NULL", errno);
exit(1);
}
num_apps = 0;
for (j = i = 0; i < array_size; ++i) {
apps[num_apps] = (orte_app_context_t *)
orte_pointer_array_get_item(apps_pa, i);
if (NULL != apps[num_apps]) {
j += apps[num_apps]->num_procs;
num_apps++;
}
}
if (0 == num_apps) {
/* This should never happen -- this case should be caught in
create_app(), but let's just double check... */
opal_show_help("help-orterun.txt", "orterun:nothing-to-do",
true, orterun_basename);
exit(1);
}
proc_infos = (struct proc_info_t*)malloc(sizeof(struct proc_info_t) * j);
if (NULL == proc_infos) {
opal_show_help("help-orterun.txt", "orterun:call-failed",
true, orterun_basename, "system", "malloc returned NULL", errno);
exit(1);
}
for (i = 0; i < j; ++i) {
proc_infos[i].reported = false;
proc_infos[i].exit_status = 0;
}
/* Intialize our Open RTE environment */
/* Set the flag telling orte_init that I am NOT a
* singleton, but am "infrastructure" - prevents setting
* up incorrect infrastructure that only a singleton would
* require
*/
if (ORTE_SUCCESS != (rc = orte_init(true))) {
opal_show_help("help-orterun.txt", "orterun:init-failure", true,
"orte_init()", rc);
return rc;
}
/* check for daemon flags and push them into the environment
* since this isn't being automatically done
*/
id = mca_base_param_reg_int_name("orte_debug", "daemons",
"Whether to debug the ORTE daemons or not",
false, false, (int)false, &iparam);
if (iparam) {
char *tmp = mca_base_param_environ_variable("orte", "debug", "daemons");
if (ORTE_SUCCESS != (rc = opal_setenv(tmp, "1", true, &environ))) {
opal_show_help("help-orterun.txt", "orterun:environ", false,
orterun_basename, tmp, "1", rc);
free(tmp);
return rc;
}
free(tmp);
}
id = mca_base_param_reg_int_name("orte", "debug",
"Top-level ORTE debug switch",
false, false, 0, &iparam);
if (iparam) {
char *tmp = mca_base_param_environ_variable("orte", NULL, "debug");
if (ORTE_SUCCESS != (rc = opal_setenv(tmp, "1", true, &environ))) {
opal_show_help("help-orterun.txt", "orterun:environ", false,
orterun_basename, tmp, "1", rc);
free(tmp);
return rc;
}
free(tmp);
}
id = mca_base_param_reg_int_name("orte_debug", "daemons_file",
"Whether want stdout/stderr of daemons to go to a file or not",
false, false, 0, &iparam);
if (iparam) {
char *tmp = mca_base_param_environ_variable("orte", "debug",
"daemons_file");
if (ORTE_SUCCESS != (rc = opal_setenv(tmp, "1", true, &environ))) {
opal_show_help("help-orterun.txt", "orterun:environ", false,
orterun_basename, tmp, "1", rc);
free(tmp);
return rc;
}
free(tmp);
}
id = mca_base_param_reg_int_name("orte", "no_daemonize",
"Whether to properly daemonize the ORTE daemons or not",
false, false, 0, &iparam);
if (iparam) {
char *tmp = mca_base_param_environ_variable("orte", NULL,
"no_daemonize");
if (ORTE_SUCCESS != (rc = opal_setenv(tmp, "1", true, &environ))) {
opal_show_help("help-orterun.txt", "orterun:environ", false,
orterun_basename, tmp, "1", rc);
free(tmp);
return rc;
}
free(tmp);
}
/* pre-condition any network transports that require it */
if (ORTE_SUCCESS != (rc = orte_pre_condition_transports(apps, num_apps))) {
ORTE_ERROR_LOG(rc);
opal_show_help("help-orterun.txt", "orterun:precondition", false,
orterun_basename, NULL, NULL, rc);
return rc;
}
/* Prep to start the application */
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
/** setup callbacks for abort signals */
opal_signal_set(&term_handler, SIGTERM,
abort_signal_callback, &term_handler);
opal_signal_add(&term_handler, NULL);
opal_signal_set(&int_handler, SIGINT,
abort_signal_callback, &int_handler);
opal_signal_add(&int_handler, NULL);
#ifndef __WINDOWS__
/** setup callbacks for signals we should foward */
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
opal_signal_set(&sigusr1_handler, SIGUSR1,
signal_forward_callback, &sigusr1_handler);
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
opal_signal_add(&sigusr1_handler, NULL);
opal_signal_set(&sigusr2_handler, SIGUSR2,
signal_forward_callback, &sigusr2_handler);
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
opal_signal_add(&sigusr2_handler, NULL);
#endif /* __WINDOWS__ */
orte_totalview_init_before_spawn();
/* Spawn the job */
cb_states = ORTE_PROC_STATE_TERMINATED | ORTE_PROC_STATE_AT_STG1;
rc = orte_rmgr.spawn_job(apps, num_apps, &jobid, job_state_callback, cb_states);
if (ORTE_SUCCESS != rc) {
/* JMS show_help */
opal_output(0, "%s: spawn failed with errno=%d\n", orterun_basename, rc);
} else {
/* Wait for the app to complete */
if (wait_for_job_completion) {
OPAL_THREAD_LOCK(&orterun_globals.lock);
while (!orterun_globals.exit) {
opal_condition_wait(&orterun_globals.cond,
&orterun_globals.lock);
}
/* check to see if the job was aborted */
if (ORTE_SUCCESS != (rc = orte_smr.get_job_state(&exit_state, jobid))) {
ORTE_ERROR_LOG(rc);
/* define the exit state as abnormal by default */
exit_state = ORTE_JOB_STATE_ABORTED;
}
if (ORTE_JOB_STATE_TERMINATED != exit_state) {
/* abnormal termination of some kind */
dump_aborted_procs(jobid);
/* If we showed more abort messages than were allowed,
show a followup message here */
if (num_aborted > max_display_aborted) {
i = num_aborted - max_display_aborted;
printf("%d additional process%s aborted (not shown)\n",
i, ((i > 1) ? "es" : ""));
}
if (num_killed > 0) {
printf("%d process%s killed (possibly by Open MPI)\n",
num_killed, ((num_killed > 1) ? "es" : ""));
}
}
/* Make sure we propagate the exit code */
if (WIFEXITED(orterun_globals.exit_status)) {
rc = WEXITSTATUS(orterun_globals.exit_status);
} else {
/* If a process was killed by a signal, then make the
* exit code of orterun be "signo + 128" so that "prog"
* and "orterun prog" will both set the same status
* value for the shell */
rc = WTERMSIG(orterun_globals.exit_status) + 128;
}
/* the job is complete - now tell the orteds that it is
* okay to finalize and exit, we are done with them
*/
if (ORTE_SUCCESS != (rc = orte_pls.terminate_orteds(jobid))) {
opal_show_help("help-orterun.txt", "orterun:daemon-die", false,
orterun_basename, NULL, NULL, rc);
}
OPAL_THREAD_UNLOCK(&orterun_globals.lock);
}
}
/* All done */
for (i = 0; i < num_apps; ++i) {
OBJ_RELEASE(apps[i]);
}
free(apps);
OBJ_RELEASE(apps_pa);
orte_finalize();
free(orterun_basename);
free(proc_infos);
return rc;
}
/*
* On abnormal termination - dump the
* exit status of the aborted procs.
*/
static void dump_aborted_procs(orte_jobid_t jobid)
{
char *segment;
orte_gpr_value_t** values = NULL;
orte_std_cntr_t i, k, num_values = 0;
int rc;
int32_t exit_status = 0;
bool exit_status_set;
char *keys[] = {
ORTE_PROC_NAME_KEY,
ORTE_PROC_PID_KEY,
ORTE_PROC_RANK_KEY,
ORTE_PROC_EXIT_CODE_KEY,
ORTE_NODE_NAME_KEY,
NULL
};
OPAL_TRACE_ARG1(1, jobid);
/* query the job segment on the registry */
if(ORTE_SUCCESS != (rc = orte_schema.get_job_segment_name(&segment, jobid))) {
ORTE_ERROR_LOG(rc);
return;
}
rc = orte_gpr.get(
ORTE_GPR_KEYS_OR|ORTE_GPR_TOKENS_OR,
segment,
NULL,
keys,
&num_values,
&values
);
if(rc != ORTE_SUCCESS) {
ORTE_ERROR_LOG(rc);
free(segment);
return;
}
for (i = 0; i < num_values; i++) {
orte_gpr_value_t* value = values[i];
orte_process_name_t name, *nptr;
pid_t pid = 0, *pidptr;
orte_std_cntr_t rank = 0, *sptr;
bool rank_found=false;
char* node_name = NULL;
orte_exit_code_t *ecptr;
exit_status = 0;
exit_status_set = false;
for(k=0; k < value->cnt; k++) {
orte_gpr_keyval_t* keyval = value->keyvals[k];
if(strcmp(keyval->key, ORTE_PROC_NAME_KEY) == 0) {
if (ORTE_SUCCESS != (rc = orte_dss.get((void**)&nptr, keyval->value, ORTE_NAME))) {
ORTE_ERROR_LOG(rc);
continue;
}
name = *nptr;
continue;
}
if(strcmp(keyval->key, ORTE_PROC_PID_KEY) == 0) {
if (ORTE_SUCCESS != (rc = orte_dss.get((void**)&pidptr, keyval->value, ORTE_PID))) {
ORTE_ERROR_LOG(rc);
continue;
}
pid = *pidptr;
continue;
}
if(strcmp(keyval->key, ORTE_PROC_RANK_KEY) == 0) {
if (ORTE_SUCCESS != (rc = orte_dss.get((void**)&sptr, keyval->value, ORTE_STD_CNTR))) {
ORTE_ERROR_LOG(rc);
continue;
}
rank_found = true;
rank = *sptr;
continue;
}
if(strcmp(keyval->key, ORTE_PROC_EXIT_CODE_KEY) == 0) {
if (ORTE_SUCCESS != (rc = orte_dss.get((void**)&ecptr, keyval->value, ORTE_EXIT_CODE))) {
ORTE_ERROR_LOG(rc);
continue;
}
exit_status = *ecptr;
exit_status_set = true;
continue;
}
if(strcmp(keyval->key, ORTE_NODE_NAME_KEY) == 0) {
node_name = (char*)(keyval->value->data);
continue;
}
}
if (rank_found && exit_status_set) {
proc_infos[rank].exit_status = exit_status;
}
if (rank_found && !proc_infos[rank].reported) {
proc_infos[rank].reported = true;
if (WIFSIGNALED(exit_status)) {
if (9 == WTERMSIG(exit_status)) {
++num_killed;
} else {
if (num_aborted < max_display_aborted) {
opal_show_help("help-orterun.txt", "orterun:proc-aborted", false,
orterun_basename, (unsigned long)rank, (unsigned long)pid,
node_name, WTERMSIG(exit_status));
}
++num_aborted;
}
}
}
/* If we haven't done so already, hold the exit_status so we
can return it when exiting. Specifically, keep the first
non-zero entry. If they all return zero, we'll return
zero. We already have the globals.lock (from
job_state_callback), so don't try to get it again. */
if (0 == orterun_globals.exit_status && exit_status_set) {
orterun_globals.exit_status = exit_status;
}
OBJ_RELEASE(value);
}
if (NULL != values) {
free(values);
}
free(segment);
}
/*
* signal main thread when application completes
*/
static void job_state_callback(orte_jobid_t jobid, orte_proc_state_t state)
{
OPAL_TRACE_ARG2(1, jobid, state);
OPAL_THREAD_LOCK(&orterun_globals.lock);
/* Note that there's only three states that we're interested in
here:
TERMINATED: which means that all the processes in the job have
completed (normally and/or abnormally).
AT_STG1: which means that everyone has hit stage gate 1, so we
can do the parallel debugger startup stuff.
Remember that the rmgr itself will also be called for the
ABORTED state and call the pls.terminate_job, which will result
in killing all the other processes. */
if (orte_debug_flag) {
opal_output(0, "spawn: in job_state_callback(jobid = %d, state = 0x%x)\n",
jobid, state);
}
switch(state) {
case ORTE_PROC_STATE_TERMINATED:
orterun_globals.exit_status = 0; /* set the exit status to indicate normal termination */
orterun_globals.exit = true;
opal_condition_signal(&orterun_globals.cond);
break;
case ORTE_PROC_STATE_AT_STG1:
orte_totalview_init_after_spawn(jobid);
break;
default:
opal_output(0, "orterun: job state callback in unexpected state - jobid %lu, state 0x%04x\n", jobid, state);
break;
}
OPAL_THREAD_UNLOCK(&orterun_globals.lock);
}
/*
* Fail-safe in the event the job hangs and doesn't
* cleanup correctly.
*/
static void exit_callback(int fd, short event, void *arg)
{
OPAL_TRACE(1);
opal_show_help("help-orterun.txt", "orterun:abnormal-exit",
true, orterun_basename, orterun_basename);
/* Remove the TERM and INT signal handlers */
opal_signal_del(&term_handler);
opal_signal_del(&int_handler);
#ifndef __WINDOWS__
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
/** Remove the USR signal handlers */
opal_signal_del(&sigusr1_handler);
opal_signal_del(&sigusr2_handler);
#endif /* __WINDOWS__ */
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
/* Trigger the normal exit conditions */
orterun_globals.exit = true;
orterun_globals.exit_status = 1;
opal_condition_signal(&orterun_globals.cond);
}
/*
* Attempt to terminate the job and wait for callback indicating
* the job has been aborted.
*/
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
static void abort_signal_callback(int fd, short flags, void *arg)
{
int ret;
struct timeval tv = { 5, 0 };
opal_event_t* event;
static int signalled = 0;
OPAL_TRACE(1);
if (0 != signalled++) {
return;
}
if (!orterun_globals.quiet){
fprintf(stderr, "%s: killing job...\n\n", orterun_basename);
}
/* terminate the job - this will also wakeup orterun so
* it can kill all the orteds
*/
if (jobid != ORTE_JOBID_MAX) {
ret = orte_pls.terminate_job(jobid);
if (ORTE_SUCCESS != ret) {
jobid = ORTE_JOBID_MAX;
}
}
if (NULL != (event = (opal_event_t*)malloc(sizeof(opal_event_t)))) {
opal_evtimer_set(event, exit_callback, NULL);
opal_evtimer_add(event, &tv);
}
}
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
/**
* Pass user signals to the remote application processes
*/
static void signal_forward_callback(int fd, short event, void *arg)
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
{
struct opal_event *signal = (struct opal_event*)arg;
int signum, ret;
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
OPAL_TRACE(1);
signum = OPAL_EVENT_SIGNAL(signal);
if (!orterun_globals.quiet){
fprintf(stderr, "%s: Forwarding signal %d to job",
orterun_basename, signum);
}
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
/** send the signal out to the processes */
if (ORTE_SUCCESS != (ret = orte_pls.signal_job(jobid, signum))) {
fprintf(stderr, "Signal %d could not be sent to the job (returned %d)",
signum, ret);
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 18:27:17 +00:00
}
}
static int init_globals(void)
{
struct globals_t tmp = {
/* help = */ false,
/* version = */ false,
/* verbose = */ false,
/* quiet = */ false,
/* exit = */ false,
/* no_wait = */ false,
/* by_node = */ false,
/* by_slot = */ false,
/* no_oversub = */ false,
/* debugger = */ false,
/* no_local = */ false,
/* num_procs = */ 0,
/* exit_status = */ 0,
/* hostfile = */ NULL,
/* env_val = */ NULL,
/* appfile = */ NULL,
/* wdir = */ NULL,
/* path = */ NULL
};
/* Only CONSTRUCT things once */
if (!globals_init) {
OBJ_CONSTRUCT(&orterun_globals.lock, opal_mutex_t);
OBJ_CONSTRUCT(&orterun_globals.cond, opal_condition_t);
}
/* Reset the other fields every time */
orterun_globals = tmp;
/* All done */
globals_init = true;
return ORTE_SUCCESS;
}
static int parse_globals(int argc, char* argv[])
{
opal_cmd_line_t cmd_line;
int id, ret;
/* Setup and parse the command line */
init_globals();
opal_cmd_line_create(&cmd_line, cmd_line_init);
mca_base_cmd_line_setup(&cmd_line);
if (ORTE_SUCCESS != (ret = opal_cmd_line_parse(&cmd_line, true,
argc, argv)) ) {
return ret;
}
/* print version if requested. Do this before check for help so
that --version --help works as one might expect. */
if (orterun_globals.version &&
!(1 == argc || orterun_globals.help)) {
char *project_name = NULL;
if (0 == strcmp(orterun_basename, "mpirun")) {
project_name = "Open MPI";
} else {
project_name = "OpenRTE";
}
opal_show_help("help-orterun.txt", "orterun:version", false,
orterun_basename, project_name, OPAL_VERSION,
PACKAGE_BUGREPORT);
/* if we were the only argument, exit */
if (2 == argc) exit(0);
}
/* Check for help request */
if (1 == argc || orterun_globals.help) {
char *args = NULL;
char *project_name = NULL;
if (0 == strcmp(orterun_basename, "mpirun")) {
project_name = "Open MPI";
} else {
project_name = "OpenRTE";
}
args = opal_cmd_line_get_usage_msg(&cmd_line);
opal_show_help("help-orterun.txt", "orterun:usage", false,
orterun_basename, project_name, OPAL_VERSION,
orterun_basename, args,
PACKAGE_BUGREPORT);
free(args);
/* If someone asks for help, that should be all we do */
exit(0);
}
/* Do we want a user-level debugger? */
if (orterun_globals.debugger) {
orte_run_debugger(orterun_basename, argc, argv);
}
/* Allocate and map by node or by slot? Shortcut for setting an
MCA param. */
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
/* JMS To be changed post-beta to LAM's C/N command line notation */
/* Don't initialize the MCA parameter here unless we have to,
* since it really should be initialized in rmaps_base_open */
if (orterun_globals.by_node || orterun_globals.by_slot) {
char *policy = NULL;
id = mca_base_param_reg_string_name("rmaps", "base_schedule_policy",
"Scheduling policy for RMAPS. [slot | node]",
false, false, "slot", &policy);
if (orterun_globals.by_node) {
orterun_globals.by_slot = false;
mca_base_param_set_string(id, "node");
} else {
orterun_globals.by_slot = true;
mca_base_param_set_string(id, "slot");
}
free(policy);
}
else {
/* Default */
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
orterun_globals.by_slot = true;
}
/** Do we want to disallow oversubscription of nodes? */
id = mca_base_param_reg_int_name("rmaps", "base_no_oversubscribe",
"If nonzero, do not allow oversubscription of processes on nodes. If zero (default), oversubscription is allowed.",
false, false, 0, &ret);
if (orterun_globals.no_oversubscribe) {
mca_base_param_set_int(id, (int)true);
} else {
mca_base_param_set_int(id, (int)false);
}
(copied from a mail that has a lengthy description of this commit) I spoke with Tim about this the other day -- he gave me the green light to go ahead with this, but it turned into a bigger job than I thought it would be. I revamped how the default RAS scheduling and round_robin RMAPS mapping occurs. The previous algorithms were pretty brain dead, and ignored the "slots" and "max_slots" tokens in hostfiles. I considered this a big enough problem to fix it for the beta (because there is currently no way to control where processes are launched on SMPs). There's still some more bells and whistles that I'd like to implement, but there's no hurry, and they can go on the trunk at any time. My patches below are for what I considered "essential", and do the following: - honor the "slots" and "max-slots" tokens in the hostfile (and all their synonyms), meaning that we allocate/map until we fill slots, and if there are still more processes to allocate/map, we keep going until we fill max-slots (i.e., only oversubscribe a node if we have to). - offer two different algorithms, currently supported by two new options to orterun. Remember that there are two parts here -- slot allocation and process mapping. Slot allocation controls how many processes we'll be running on a node. After that decision has been made, process mapping effectively controls where the ranks of MPI_COMM_WORLD (MCW) are placed. Some of the examples given below don't make sense unless you remember that there is a difference between the two (which makes total sense, but you have to think about it in terms of both things): 1. "-bynode": allocates/maps one process per node in a round-robin fashion until all slots on the node are taken. If we still have more processes after all slots are taken, then keep going until all max-slots are taken. Examples: - The hostfile: eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -bynode -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 2 vogon: MCW ranks 1, 3, 4, 5 - orterun -bynode -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4 vogon: MCW ranks 1, 3, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until each node's max_slots is hit, of course) - orterun -bynode -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 2, 4, 6 vogon: MCW ranks 1, 3, 5, 7, 8, 9, 10, 11 2. "-byslot" (this is the default if you don't specify -bynode): greedily takes all available slots on a node for a job before moving on to the next node. If we still have processes to allocate/schedule, then oversubscribe all nodes equally (i.e., go round robin on all nodes until each node's max_slots is hit). Examples: - The hostfile eddie slots=2 max-slots=4 vogon slots=4 max-slots=8 - orterun -np 6 -hostfile hostfile a.out eddie: MCW ranks 0, 1 vogon: MCW ranks 2, 3, 4, 5 - orterun -np 8 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2 vogon: MCW ranks 3, 4, 5, 6, 7 -> the algorithm oversubscribes all nodes "equally" (until max_slots is hit) - orterun -np 12 -hostfile hostfile a.out eddie: MCW ranks 0, 1, 2, 3 vogon: MCW ranks 4, 5, 6, 7, 8, 9, 10, 11 The above examples are fairly contrived, and it's not clear from them that you can get different allocation answers in all cases (the mapping differences are obvious). Consider the following allocation example: - The hostfile eddie count=4 vogon count=4 earth count=4 deep-thought count=4 - orterun -np 8 -hostfile hostfile a.out eddie: 4 slots will be allocated vogon: 4 slots will be allocated earth: no slots allocated deep-thought: no slots allocated - orterun -bynode -np 8 -hostfile hostfile a.out eddie: 2 slots will be allocated vogon: 2 slots will be allocated earth: 2 slots will be allocated deep-thought: 2 slots will be allocated This commit was SVN r5894.
2005-05-31 16:36:53 +00:00
/* Do we want to allow MPI applications on the same node as
mpirun? */
id = mca_base_param_reg_int_name("rmaps", "base_schedule_local",
"If nonzero, allow scheduling MPI applications on the same node as mpirun (default). If zero, do not schedule any MPI applications on the same node as mpirun",
false, false, 1, &ret);
if (orterun_globals.no_local_schedule) {
mca_base_param_set_int(id, 0);
} else {
mca_base_param_set_int(id, 1);
}
/* If we don't want to wait, we don't want to wait */
if (orterun_globals.no_wait_for_job_completion) {
wait_for_job_completion = false;
}
OBJ_DESTRUCT(&cmd_line);
return ORTE_SUCCESS;
}
static int parse_locals(int argc, char* argv[])
{
int i, rc, app_num;
int temp_argc;
char **temp_argv, **env;
orte_app_context_t *app;
bool made_app;
orte_std_cntr_t j, size1;
/* Make the apps */
temp_argc = 0;
temp_argv = NULL;
opal_argv_append(&temp_argc, &temp_argv, argv[0]);
/* Make the max size of the array be INT_MAX because we may be
parsing an app file, in which case we don't know how many
entries there will be. The max size of an orte_pointer_array
is only a safety net; it only initially allocates block_size
entries (2, in this case) */
orte_pointer_array_init(&apps_pa, 1, INT_MAX, 2);
/* NOTE: This bogus env variable is necessary in the calls to
create_app(), below. See comment immediately before the
create_app() function for an explanation. */
env = NULL;
for (app_num = 0, i = 1; i < argc; ++i) {
if (0 == strcmp(argv[i], ":")) {
/* Make an app with this argv */
if (opal_argv_count(temp_argv) > 1) {
if (NULL != env) {
opal_argv_free(env);
env = NULL;
}
app = NULL;
rc = create_app(temp_argc, temp_argv, &app, &made_app, &env);
/** keep track of the number of apps - point this app_context to that index */
if (ORTE_SUCCESS != rc) {
/* Assume that the error message has already been
printed; no need to cleanup -- we can just
exit */
exit(1);
}
if (made_app) {
orte_std_cntr_t dummy;
app->idx = app_num;
++app_num;
orte_pointer_array_add(&dummy, apps_pa, app);
}
/* Reset the temps */
temp_argc = 0;
temp_argv = NULL;
opal_argv_append(&temp_argc, &temp_argv, argv[0]);
}
} else {
opal_argv_append(&temp_argc, &temp_argv, argv[i]);
}
}
if (opal_argv_count(temp_argv) > 1) {
app = NULL;
rc = create_app(temp_argc, temp_argv, &app, &made_app, &env);
if (ORTE_SUCCESS != rc) {
/* Assume that the error message has already been printed;
no need to cleanup -- we can just exit */
exit(1);
}
if (made_app) {
orte_std_cntr_t dummy;
app->idx = app_num;
++app_num;
orte_pointer_array_add(&dummy, apps_pa, app);
}
}
if (NULL != env) {
opal_argv_free(env);
}
opal_argv_free(temp_argv);
/* Once we've created all the apps, add the global MCA params to
each app's environment (checking for duplicates, of
course -- yay opal_environ_merge()). */
if (NULL != global_mca_env) {
size1 = orte_pointer_array_get_size(apps_pa);
/* Iterate through all the apps */
for (j = 0; j < size1; ++j) {
app = (orte_app_context_t *)
orte_pointer_array_get_item(apps_pa, j);
if (NULL != app) {
/* Use handy utility function */
env = opal_environ_merge(global_mca_env, app->env);
opal_argv_free(app->env);
app->env = env;
}
}
}
/* Now take a subset of the MCA params and set them as MCA
overrides here in orterun (so that when we orte_init() later,
all the components see these MCA params). Here's how we decide
which subset of the MCA params we set here in orterun:
1. If any global MCA params were set, use those
2. If no global MCA params were set and there was only one app,
then use its app MCA params
3. Otherwise, don't set any
*/
env = NULL;
if (NULL != global_mca_env) {
env = global_mca_env;
} else {
if (orte_pointer_array_get_size(apps_pa) >= 1) {
/* Remember that pointer_array's can be padded with NULL
entries; so only use the app's env if there is exactly
1 non-NULL entry */
app = (orte_app_context_t *)
orte_pointer_array_get_item(apps_pa, 0);
if (NULL != app) {
env = app->env;
for (j = 1; j < orte_pointer_array_get_size(apps_pa); ++j) {
if (NULL != orte_pointer_array_get_item(apps_pa, j)) {
env = NULL;
break;
}
}
}
}
}
if (NULL != env) {
size1 = opal_argv_count(env);
for (j = 0; j < size1; ++j) {
putenv(env[j]);
}
}
/* All done */
return ORTE_SUCCESS;
}
/*
* This function takes a "char ***app_env" parameter to handle the
* specific case:
*
* orterun --mca foo bar -app appfile
*
* That is, we'll need to keep foo=bar, but the presence of the app
* file will cause an invocation of parse_appfile(), which will cause
* one or more recursive calls back to create_app(). Since the
* foo=bar value applies globally to all apps in the appfile, we need
* to pass in the "base" environment (that contains the foo=bar value)
* when we parse each line in the appfile.
*
* This is really just a special case -- when we have a simple case like:
*
* orterun --mca foo bar -np 4 hostname
*
* Then the upper-level function (parse_locals()) calls create_app()
* with a NULL value for app_env, meaning that there is no "base"
* environment that the app needs to be created from.
*/
static int create_app(int argc, char* argv[], orte_app_context_t **app_ptr,
bool *made_app, char ***app_env)
{
opal_cmd_line_t cmd_line;
char cwd[OMPI_PATH_MAX];
int i, j, count, rc;
char *param, *value, *value2;
orte_app_context_t *app = NULL;
#if 0 /* Used only in the C/N notion case, remove to silence compiler warnings */
orte_std_cntr_t l, len;
#endif
bool map_data = false, save_arg, cmd_line_made = false;
int new_argc = 0;
char **new_argv = NULL;
*made_app = false;
/* Pre-process the command line:
- convert C, cX, N, nX arguments to "-rawmap <id> <arg>" so
that the parser can pick it up nicely.
- convert -host to -rawmap <id> <arg>
- convert -arch to -rawmap <id> <arg>
Converting these to the same argument type will a) simplify the
logic down below, and b) allow us to preserve the ordering of
these arguments as the user specified them on the command
line. */
for (i = 0; i < argc; ++i) {
map_data = false;
save_arg = true;
/* JJH To fix in the future
* Currently C/N notation is not supported so don't execute this check
* Bug: Make this context sensitive since it will not behave properly
* with the following argument set:
* $ orterun -np 2 -host c2,c3,c12 hostname
* Since it will see the hosts c2, c3, and c12 as C options instead
* of hostnames.
*/
if(false) { ; } /* Wrapper to preserve logic continuation while the below
is commented out */
#if 0
if (0 == strcmp(argv[i], "C") ||
0 == strcmp(argv[i], "N")) {
map_data = true;
}
/* Heuristic: if the string fits "[cn][0-9]+" or "[cn][0-9],",
then accept it as mapping data */
else if ('c' == argv[i][0] || 'n' == argv[i][0]) {
len = strlen(argv[i]);
if (len > 1) {
for (l = 1; l < len; ++l) {
if (',' == argv[i][l]) {
map_data = true;
break;
} else if (!isdigit(argv[i][l])) {
break;
}
}
if (l >= len) {
map_data = true;
}
}
}
#endif
#if 0
/* JMS commented out because we don't handle this in any
mapper */
/* Save -arch args */
else if (0 == strcmp("-arch", argv[i])) {
char str[2] = { '0' + ORTE_APP_CONTEXT_MAP_ARCH, '\0' };
opal_argv_append(&new_argc, &new_argv, "-rawmap");
opal_argv_append(&new_argc, &new_argv, str);
save_arg = false;
}
#endif
/* Save -host args */
else if (0 == strcmp("--host",argv[i]) ||
0 == strcmp("-host", argv[i]) ||
0 == strcmp("-H", argv[i])) {
char str[2] = { '0' + ORTE_APP_CONTEXT_MAP_HOSTNAME, '\0' };
opal_argv_append(&new_argc, &new_argv, "-rawmap");
opal_argv_append(&new_argc, &new_argv, str);
save_arg = false;
}
/* If this token was C/N map data, save it */
if (map_data) {
char str[2] = { '0' + ORTE_APP_CONTEXT_MAP_CN, '\0' };
opal_argv_append(&new_argc, &new_argv, "-rawmap");
opal_argv_append(&new_argc, &new_argv, str);
}
if (save_arg) {
opal_argv_append(&new_argc, &new_argv, argv[i]);
}
}
/* Parse application command line options. Add the -rawmap option
separately so that the user doesn't see it in the --help
message. */
init_globals();
opal_cmd_line_create(&cmd_line, cmd_line_init);
mca_base_cmd_line_setup(&cmd_line);
cmd_line_made = true;
opal_cmd_line_make_opt3(&cmd_line, '\0', NULL, "rawmap", 2,
"Hidden / internal parameter -- users should not use this!");
rc = opal_cmd_line_parse(&cmd_line, true, new_argc, new_argv);
opal_argv_free(new_argv);
new_argv = NULL;
if (ORTE_SUCCESS != rc) {
goto cleanup;
}
mca_base_cmd_line_process_args(&cmd_line, app_env, &global_mca_env);
/* Is there an appfile in here? */
if (NULL != orterun_globals.appfile) {
OBJ_DESTRUCT(&cmd_line);
return parse_appfile(strdup(orterun_globals.appfile), app_env);
}
/* Setup application context */
app = OBJ_NEW(orte_app_context_t);
opal_cmd_line_get_tail(&cmd_line, &count, &app->argv);
/* See if we have anything left */
if (0 == count) {
opal_show_help("help-orterun.txt", "orterun:executable-not-specified",
true, orterun_basename, orterun_basename);
rc = ORTE_ERR_NOT_FOUND;
goto cleanup;
}
/* Grab all OMPI_* environment variables */
app->env = opal_argv_copy(*app_env);
for (i = 0; NULL != environ[i]; ++i) {
if (0 == strncmp("OMPI_", environ[i], 5)) {
opal_argv_append_nosize(&app->env, environ[i]);
}
}
/* Did the user request to export any environment variables? */
if (opal_cmd_line_is_taken(&cmd_line, "x")) {
j = opal_cmd_line_get_ninsts(&cmd_line, "x");
for (i = 0; i < j; ++i) {
param = opal_cmd_line_get_param(&cmd_line, "x", i, 0);
if (NULL != strchr(param, '=')) {
opal_argv_append_nosize(&app->env, param);
} else {
value = getenv(param);
if (NULL != value) {
if (NULL != strchr(value, '=')) {
opal_argv_append_nosize(&app->env, value);
} else {
asprintf(&value2, "%s=%s", param, value);
opal_argv_append_nosize(&app->env, value2);
free(value2);
}
} else {
opal_output(0, "Warning: could not find environment variable \"%s\"\n", param);
}
}
}
}
/* Did the user request a specific path? */
if (NULL != orterun_globals.path) {
asprintf(&value, "PATH=%s", orterun_globals.path);
opal_argv_append_nosize(&app->env, value);
free(value);
}
/* Did the user request a specific wdir? */
if (NULL != orterun_globals.wdir) {
app->cwd = strdup(orterun_globals.wdir);
app->user_specified_cwd = true;
} else {
getcwd(cwd, sizeof(cwd));
app->cwd = strdup(cwd);
app->user_specified_cwd = false;
}
/* Check to see if the user explicitly wanted to disable automatic
--prefix behavior */
if (opal_cmd_line_is_taken(&cmd_line, "noprefix")) {
want_prefix_by_default = false;
}
/* Did the user specify a specific prefix for this app_context_t
or provide an absolute path name to argv[0]? */
if (opal_cmd_line_is_taken(&cmd_line, "prefix") ||
'/' == argv[0][0] || want_prefix_by_default) {
size_t param_len;
/* The --prefix option takes precedence over /path/to/orterun */
if (opal_cmd_line_is_taken(&cmd_line, "prefix")) {
param = opal_cmd_line_get_param(&cmd_line, "prefix", 0, 0);
}
/* /path/to/orterun */
else if ('/' == argv[0][0]) {
char* tmp_basename = NULL;
/* If they specified an absolute path, strip off the
/bin/<exec_name>" and leave just the prefix */
param = opal_dirname(argv[0]);
/* Quick sanity check to ensure we got
something/bin/<exec_name> and that the installation
tree is at least more or less what we expect it to
be */
tmp_basename = opal_basename(param);
if (0 == strcmp("bin", tmp_basename)) {
char* tmp = param;
param = opal_dirname(tmp);
free(tmp);
} else {
free(param);
param = NULL;
}
free(tmp_basename);
}
/* --enable-orterun-prefix-default was given to orterun */
else {
param = strdup(OPAL_PREFIX);
}
if (NULL != param) {
/* "Parse" the param, aka remove superfluous path_sep. */
param_len = strlen(param);
while (0 == strcmp (OPAL_PATH_SEP, &(param[param_len-1]))) {
param[param_len-1] = '\0';
param_len--;
if (0 == param_len) {
opal_show_help("help-orterun.txt", "orterun:empty-prefix",
true, orterun_basename, orterun_basename);
return ORTE_ERR_FATAL;
}
}
app->prefix_dir = strdup(param);
}
}
/* Did the user request any mappings? They were all converted to
--rawmap items, above. */
if (opal_cmd_line_is_taken(&cmd_line, "rawmap")) {
j = opal_cmd_line_get_ninsts(&cmd_line, "rawmap");
app->map_data = (orte_app_context_map_t**)malloc(sizeof(orte_app_context_map_t*) * j);
if (NULL == app->map_data) {
rc = ORTE_ERR_OUT_OF_RESOURCE;
goto cleanup;
}
app->num_map = j;
for (i = 0; i < j; ++i) {
app->map_data[i] = NULL;
}
for (i = 0; i < j; ++i) {
value = opal_cmd_line_get_param(&cmd_line, "rawmap", i, 0);
value2 = opal_cmd_line_get_param(&cmd_line, "rawmap", i, 1);
app->map_data[i] = OBJ_NEW(orte_app_context_map_t);
if (NULL == app->map_data[i]) {
rc = ORTE_ERR_OUT_OF_RESOURCE;
goto cleanup;
}
app->map_data[i]->map_type = value[0] - '0';
app->map_data[i]->map_data = strdup(value2);
/* map_data = true;
* JJH - This activates the C/N mapping stuff,
* or at least allows us to pass the 'num_procs' check below.
* since it is not implemented yet, leave commented. */
}
}
/* Get the numprocs */
app->num_procs = orterun_globals.num_procs;
/* If the user didn't specify the number of processes to run, then we
default to launching an app process using every slot. We can't do
anything about that here - we leave it to the RMAPS framework's
components to note this and deal with it later.
HOWEVER, we ONLY support this mode of operation if the number of
app_contexts is equal to ONE. If the user provides multiple applications,
we simply must have more information - in this case, generate an
error.
*/
if (app->num_procs == 0) {
have_zero_np = true; /** flag that we have a zero_np situation */
}
if (0 < total_num_apps && have_zero_np) {
/** we have more than one app and a zero_np - that's no good.
* note that we have to do this as a two step logic check since
* the user may fail to specify num_procs for the first app, but
* then give us another application.
*/
opal_show_help("help-orterun.txt", "orterun:multi-apps-and-zero-np",
true, orterun_basename, NULL);
return ORTE_ERR_FATAL;
}
total_num_apps++;
/* Do not try to find argv[0] here -- the starter is responsible
for that because it may not be relevant to try to find it on
the node where orterun is executing. So just strdup() argv[0]
into app. */
app->app = strdup(app->argv[0]);
if (NULL == app->app) {
opal_show_help("help-orterun.txt", "orterun:call-failed",
true, orterun_basename, "library", "strdup returned NULL", errno);
rc = ORTE_ERR_NOT_FOUND;
goto cleanup;
}
*app_ptr = app;
app = NULL;
*made_app = true;
/* All done */
cleanup:
if (NULL != app) {
OBJ_RELEASE(app);
}
if (NULL != new_argv) {
opal_argv_free(new_argv);
}
if (cmd_line_made) {
OBJ_DESTRUCT(&cmd_line);
}
return rc;
}
static int parse_appfile(char *filename, char ***env)
{
size_t i, len;
FILE *fp;
char line[BUFSIZ];
int rc, argc, app_num;
char **argv;
orte_app_context_t *app;
bool blank, made_app;
char bogus[] = "bogus ";
char **tmp_env;
/* Try to open the file */
fp = fopen(filename, "r");
if (NULL == fp) {
opal_show_help("help-orterun.txt", "orterun:appfile-not-found", true,
filename);
return ORTE_ERR_NOT_FOUND;
}
/* Read in line by line */
line[sizeof(line) - 1] = '\0';
app_num = 0;
do {
/* We need a bogus argv[0] (because when argv comes in from
the command line, argv[0] is "orterun", so the parsing
logic ignores it). So create one here rather than making
an argv and then pre-pending a new argv[0] (which would be
rather inefficient). */
line[0] = '\0';
strcat(line, bogus);
if (NULL == fgets(line + sizeof(bogus) - 1,
sizeof(line) - sizeof(bogus) - 1, fp)) {
break;
}
/* Remove a trailing newline */
len = strlen(line);
if (len > 0 && '\n' == line[len - 1]) {
line[len - 1] = '\0';
if (len > 0) {
--len;
}
}
/* Remove comments */
for (i = 0; i < len; ++i) {
if ('#' == line[i]) {
line[i] = '\0';
break;
} else if (i + 1 < len && '/' == line[i] && '/' == line[i + 1]) {
line[i] = '\0';
break;
}
}
/* Is this a blank line? */
len = strlen(line);
for (blank = true, i = sizeof(bogus); i < len; ++i) {
if (!isspace(line[i])) {
blank = false;
break;
}
}
if (blank) {
continue;
}
/* We got a line with *something* on it. So process it */
argv = opal_argv_split(line, ' ');
argc = opal_argv_count(argv);
if (argc > 0) {
/* Create a temporary env to use in the recursive call --
that is: don't disturb the original env so that we can
have a consistent global env. This allows for the
case:
orterun --mca foo bar --appfile file
where the "file" contains multiple apps. In this case,
each app in "file" will get *only* foo=bar as the base
environment from which its specific environment is
constructed. */
if (NULL != *env) {
tmp_env = opal_argv_copy(*env);
if (NULL == tmp_env) {
return ORTE_ERR_OUT_OF_RESOURCE;
}
} else {
tmp_env = NULL;
}
rc = create_app(argc, argv, &app, &made_app, &tmp_env);
if (ORTE_SUCCESS != rc) {
/* Assume that the error message has already been
printed; no need to cleanup -- we can just exit */
exit(1);
}
if (NULL != tmp_env) {
opal_argv_free(tmp_env);
}
if (made_app) {
orte_std_cntr_t dummy;
app->idx = app_num;
++app_num;
orte_pointer_array_add(&dummy, apps_pa, app);
}
}
} while (!feof(fp));
fclose(fp);
/* All done */
free(filename);
return ORTE_SUCCESS;
}