1
1
openmpi/ompi/mca/bml/r2/bml_r2_ft.c

295 строки
11 KiB
C
Исходник Обычный вид История

/*
A number of C/R enhancements per RFC below: http://www.open-mpi.org/community/lists/devel/2010/07/8240.php Documentation: http://osl.iu.edu/research/ft/ Major Changes: -------------- * Added C/R-enabled Debugging support. Enabled with the --enable-crdebug flag. See the following website for more information: http://osl.iu.edu/research/ft/crdebug/ * Added Stable Storage (SStore) framework for checkpoint storage * 'central' component does a direct to central storage save * 'stage' component stages checkpoints to central storage while the application continues execution. * 'stage' supports offline compression of checkpoints before moving (sstore_stage_compress) * 'stage' supports local caching of checkpoints to improve automatic recovery (sstore_stage_caching) * Added Compression (compress) framework to support * Add two new ErrMgr recovery policies * {{{crmig}}} C/R Process Migration * {{{autor}}} C/R Automatic Recovery * Added the {{{ompi-migrate}}} command line tool to support the {{{crmig}}} ErrMgr component * Added CR MPI Ext functions (enable them with {{{--enable-mpi-ext=cr}}} configure option) * {{{OMPI_CR_Checkpoint}}} (Fixes trac:2342) * {{{OMPI_CR_Restart}}} * {{{OMPI_CR_Migrate}}} (may need some more work for mapping rules) * {{{OMPI_CR_INC_register_callback}}} (Fixes trac:2192) * {{{OMPI_CR_Quiesce_start}}} * {{{OMPI_CR_Quiesce_checkpoint}}} * {{{OMPI_CR_Quiesce_end}}} * {{{OMPI_CR_self_register_checkpoint_callback}}} * {{{OMPI_CR_self_register_restart_callback}}} * {{{OMPI_CR_self_register_continue_callback}}} * The ErrMgr predicted_fault() interface has been changed to take an opal_list_t of ErrMgr defined types. This will allow us to better support a wider range of fault prediction services in the future. * Add a progress meter to: * FileM rsh (filem_rsh_process_meter) * SnapC full (snapc_full_progress_meter) * SStore stage (sstore_stage_progress_meter) * Added 2 new command line options to ompi-restart * --showme : Display the full command line that would have been exec'ed. * --mpirun_opts : Command line options to pass directly to mpirun. (Fixes trac:2413) * Deprecated some MCA params: * crs_base_snapshot_dir deprecated, use sstore_stage_local_snapshot_dir * snapc_base_global_snapshot_dir deprecated, use sstore_base_global_snapshot_dir * snapc_base_global_shared deprecated, use sstore_stage_global_is_shared * snapc_base_store_in_place deprecated, replaced with different components of SStore * snapc_base_global_snapshot_ref deprecated, use sstore_base_global_snapshot_ref * snapc_base_establish_global_snapshot_dir deprecated, never well supported * snapc_full_skip_filem deprecated, use sstore_stage_skip_filem Minor Changes: -------------- * Fixes trac:1924 : {{{ompi-restart}}} now recognizes path prefixed checkpoint handles and does the right thing. * Fixes trac:2097 : {{{ompi-info}}} should now report all available CRS components * Fixes trac:2161 : Manual checkpoint movement. A user can 'mv' a checkpoint directory from the original location to another and still restart from it. * Fixes trac:2208 : Honor various TMPDIR varaibles instead of forcing {{{/tmp}}} * Move {{{ompi_cr_continue_like_restart}}} to {{{orte_cr_continue_like_restart}}} to be more flexible in where this should be set. * opal_crs_base_metadata_write* functions have been moved to SStore to support a wider range of metadata handling functionality. * Cleanup the CRS framework and components to work with the SStore framework. * Cleanup the SnapC framework and components to work with the SStore framework (cleans up these code paths considerably). * Add 'quiesce' hook to CRCP for a future enhancement. * We now require a BLCR version that supports {{{cr_request_file()}}} or {{{cr_request_checkpoint()}}} in order to make the code more maintainable. Note that {{{cr_request_file}}} has been deprecated since 0.7.0, so we prefer to use {{{cr_request_checkpoint()}}}. * Add optional application level INC callbacks (registered through the CR MPI Ext interface). * Increase the {{{opal_cr_thread_sleep_wait}}} parameter to 1000 microseconds to make the C/R thread less aggressive. * {{{opal-restart}}} now looks for cache directories before falling back on stable storage when asked. * {{{opal-restart}}} also support local decompression before restarting * {{{orte-checkpoint}}} now uses the SStore framework to work with the metadata * {{{orte-restart}}} now uses the SStore framework to work with the metadata * Remove the {{{orte-restart}}} preload option. This was removed since the user only needs to select the 'stage' component in order to support this functionality. * Since the '-am' parameter is saved in the metadata, {{{ompi-restart}}} no longer hard codes {{{-am ft-enable-cr}}}. * Fix {{{hnp}}} ErrMgr so that if a previous component in the stack has 'fixed' the problem, then it should be skipped. * Make sure to decrement the number of 'num_local_procs' in the orted when one goes away. * odls now checks the SStore framework to see if it needs to load any checkpoint files before launching (to support 'stage'). This separates the SStore logic from the --preload-[binary|files] options. * Add unique IDs to the named pipes established between the orted and the app in SnapC. This is to better support migration and automatic recovery activities. * Improve the checks for 'already checkpointing' error path. * A a recovery output timer, to show how long it takes to restart a job * Do a better job of cleaning up the old session directory on restart. * Add a local module to the autor and crmig ErrMgr components. These small modules prevent the 'orted' component from attempting a local recovery (Which does not work for MPI apps at the moment) * Add a fix for bounding the checkpointable region between MPI_Init and MPI_Finalize. This commit was SVN r23587. The following Trac tickets were found above: Ticket 1924 --> https://svn.open-mpi.org/trac/ompi/ticket/1924 Ticket 2097 --> https://svn.open-mpi.org/trac/ompi/ticket/2097 Ticket 2161 --> https://svn.open-mpi.org/trac/ompi/ticket/2161 Ticket 2192 --> https://svn.open-mpi.org/trac/ompi/ticket/2192 Ticket 2208 --> https://svn.open-mpi.org/trac/ompi/ticket/2208 Ticket 2342 --> https://svn.open-mpi.org/trac/ompi/ticket/2342 Ticket 2413 --> https://svn.open-mpi.org/trac/ompi/ticket/2413
2010-08-10 20:51:11 +00:00
* Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2011 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
2015-06-23 20:59:57 -07:00
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2006 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2007-2012 Los Alamos National Security, LLC. All rights
2015-06-23 20:59:57 -07:00
* reserved.
* Copyright (c) 2008 Cisco Systems, Inc. All rights reserved.
* $COPYRIGHT$
2015-06-23 20:59:57 -07:00
*
* Additional copyrights may follow
2015-06-23 20:59:57 -07:00
*
* $HEADER$
*/
#include "ompi_config.h"
#include "opal/util/output.h"
#include <stdlib.h>
#include <string.h>
#include "opal/runtime/opal_progress.h"
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
#include "opal/mca/btl/base/base.h"
#include "opal/mca/pmix/pmix.h"
#include "ompi/runtime/ompi_cr.h"
#include "ompi/mca/bml/base/base.h"
2015-06-23 20:59:57 -07:00
#include "ompi/mca/bml/base/bml_base_btl.h"
#include "ompi/mca/pml/base/base.h"
#include "ompi/proc/proc.h"
#include "bml_r2.h"
#include "bml_r2_ft.h"
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
int mca_bml_r2_ft_event(int state)
{
#if OPAL_ENABLE_FT_CR == 1
static bool first_continue_pass = false;
ompi_proc_t** procs = NULL;
size_t num_procs;
size_t btl_idx;
int ret, p;
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
int loc_state;
int param_type = -1;
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
const char **btl_list;
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
if(OPAL_CRS_CHECKPOINT == state) {
/* Do nothing for now */
}
else if(OPAL_CRS_CONTINUE == state) {
first_continue_pass = !first_continue_pass;
/* Since nothing in Checkpoint, we are fine here (unless required by BTL) */
if (opal_cr_continue_like_restart && !first_continue_pass) {
procs = ompi_proc_all(&num_procs);
if(NULL == procs) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
}
}
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
else if(OPAL_CRS_RESTART_PRE == state ) {
/* Nothing here */
}
else if(OPAL_CRS_RESTART == state ) {
procs = ompi_proc_all(&num_procs);
if(NULL == procs) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
/* Never call the ft_event functions attached to the BTLs on the second
* pass of RESTART since on the first pass they were unloaded and therefore
* no longer exist.
*/
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
if( OPAL_CRS_RESTART != state ) {
if( OPAL_CRS_CONTINUE == state && !first_continue_pass ) {
;
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
} else {
/* Since we only ever call into the BTLs once during the first restart
* pass, just lie to them on this pass for a bit of local clarity.
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
*/
if( OPAL_CRS_RESTART_PRE == state ) {
loc_state = OPAL_CRS_RESTART;
} else {
loc_state = state;
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
}
/*
* Call ft_event in:
* - BTL modules
* - MPool modules
*
2015-06-23 20:59:57 -07:00
* These should be cleaning out stale state, and memory references in
* preparation for being shut down.
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
*/
for(btl_idx = 0; btl_idx < mca_bml_r2.num_btl_modules; btl_idx++) {
/*
* Notify Mpool
*/
if( NULL != (mca_bml_r2.btl_modules[btl_idx])->btl_mpool &&
NULL != (mca_bml_r2.btl_modules[btl_idx])->btl_mpool->mpool_ft_event ) {
opal_output_verbose(10, ompi_cr_output,
"bml:r2: ft_event: Notify the %s MPool.\n",
(mca_bml_r2.btl_modules[btl_idx])->btl_mpool->mpool_component->mpool_version.mca_component_name);
if(OMPI_SUCCESS != (ret = (mca_bml_r2.btl_modules[btl_idx])->btl_mpool->mpool_ft_event(loc_state) ) ) {
continue;
}
}
/*
* Notify BTL
*/
if( NULL != (mca_bml_r2.btl_modules[btl_idx])->btl_ft_event) {
opal_output_verbose(10, ompi_cr_output,
"bml:r2: ft_event: Notify the %s BTL.\n",
(mca_bml_r2.btl_modules[btl_idx])->btl_component->btl_version.mca_component_name);
if(OMPI_SUCCESS != (ret = (mca_bml_r2.btl_modules[btl_idx])->btl_ft_event(loc_state) ) ) {
continue;
}
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
}
}
} /* OPAL_CRS_CONTINUE == state && !first_continue_pass */
}
2015-06-23 20:59:57 -07:00
if(OPAL_CRS_CHECKPOINT == state) {
;
}
else if(OPAL_CRS_CONTINUE == state) {
/* Matches OPAL_CRS_RESTART_PRE */
if (opal_cr_continue_like_restart && first_continue_pass) {
if( OMPI_SUCCESS != (ret = mca_bml_r2_finalize()) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to finalize BML framework\n");
return ret;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if( OMPI_SUCCESS != (ret = mca_base_framework_close(&opal_btl_base_framework)) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to close BTL framework\n");
return ret;
}
}
/* Matches OPAL_CRS_RESTART */
else if (opal_cr_continue_like_restart && !first_continue_pass) {
/*
* Barrier to make all processes have been successfully restarted before
* we try to remove some restart only files.
*/
opal_pmix.fence(NULL, 0);
/*
* Re-open the BTL framework to get the full list of components.
*/
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if( OMPI_SUCCESS != (ret = mca_base_framework_open(&opal_btl_base_framework, 0)) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to open BTL framework\n");
return ret;
}
/*
* Re-select the BTL components/modules
* This will cause the BTL components to discover the available
* network options on this machine, and post proper modex informaiton.
*/
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if( OMPI_SUCCESS != (ret = mca_btl_base_select(OPAL_ENABLE_PROGRESS_THREADS,
OMPI_ENABLE_THREAD_MULTIPLE) ) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to select in BTL framework\n");
return ret;
}
/*
* Clear some structures so we can properly repopulate them
*/
mca_bml_r2.btls_added = false;
for(p = 0; p < (int)num_procs; ++p) {
if( NULL != procs[p]->proc_endpoints[OMPI_PROC_ENDPOINT_TAG_BML]) {
OBJ_RELEASE(procs[p]->proc_endpoints[OMPI_PROC_ENDPOINT_TAG_BML]);
procs[p]->proc_endpoints[OMPI_PROC_ENDPOINT_TAG_BML] = NULL;
}
OBJ_RELEASE(procs[p]);
}
if( NULL != procs ) {
free(procs);
procs = NULL;
}
}
}
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
else if(OPAL_CRS_RESTART_PRE == state ) {
opal_output_verbose(10, ompi_cr_output,
"bml:r2: ft_event(Restart): Finalize BML\n");
/*
* Finalize the BML
* - Flush progress functions
* - Flush module references
* - mca_btl_base_close()
* Need to do this because we may have BTL components that were
* unloaded in the first selection that may be available now.
* Conversely we may have BTL components loaded now that
* are not available now.
*/
if( OMPI_SUCCESS != (ret = mca_bml_r2_finalize()) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to finalize BML framework\n");
return ret;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if( OMPI_SUCCESS != (ret = mca_base_framework_close(&opal_btl_base_framework)) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to close BTL framework\n");
return ret;
}
Fix a checkpoint/restart bug that causes a restarted application to occasionally throw a SIGSEGV or SIGPIPE due to invalid socket descriptors. The problem was caused by a bad ordering between the restart of the ORTE level tcp connections (in the OOB - out-of-band communication) and the Open MPI level tcp connections (BTLs). Before this commit ORTE would shutdown and restart the OOB completely before the OMPI level restarted its tcp connections. What would happen is that a socket descriptor used by the OMPI level on checkpoint was assigned to the ORTE level on restart. But the OMPI level had no knowledge that the socket descriptor it was previously using has been recycled so it closed it on restart. This caused the ORTE level to break as the newly created socket descriptor was closed without its knowledge. The fix is to have the OMPI level shutdown tcp connections, allow the ORTE level to restart, and then allow the OMPi level to restart its connections. This seems obvious, and I'm surprised that this bug has not cropped up sooner. I'm confident that this specific problem has been fixed with this commit. Thanks to Eric Roman and Tamer El Sayed for their help in identifying this problem, and patience while I was fixing it. * Add a new state {{{OPAL_CRS_RESTART_PRE}}}. This state identifies when we are on the down slope of the INC (finalize-like) which is useful when you want to close, but not reopen a component set for fear of interfering with a lower level. * Use this new state in OMPI level coordination. Here we want to make sure to play well with both the OMPI/BTL/TCP and ORTE/OOB/TCP components. * Update ft_event functions in PML and BML to handle the new restart state. * Add an additional flag to the error output in OOB/TCP so we can see what the socket descriptor was on failure as this can be helpful in debugging. This commit was SVN r18276.
2008-04-24 17:54:22 +00:00
}
else if(OPAL_CRS_RESTART == state ) {
/*
* Barrier to make all processes have been successfully restarted before
* we try to remove some restart only files.
*/
opal_pmix.fence(NULL, 0);
/*
* Re-open the BTL framework to get the full list of components.
* - but first clear the MCA value that was there
*/
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
param_type = mca_base_var_find("ompi", "btl", NULL, NULL);
btl_list = NULL;
mca_base_var_get_value(param_type, &btl_list, NULL, NULL);
opal_output_verbose(11, ompi_cr_output,
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
"Restart (Previous BTL MCA): <%s>\n", btl_list ? btl_list[0] : "");
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if( OMPI_SUCCESS != (ret = mca_base_framework_open(&opal_btl_base_framework, 0)) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to open BTL framework\n");
return ret;
}
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
/* The reregistered paramter is guaranteed to have the same index */
btl_list = NULL;
mca_base_var_get_value(param_type, &btl_list, NULL, NULL);
opal_output_verbose(11, ompi_cr_output,
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
"Restart (New BTL MCA): <%s>\n", btl_list ? btl_list[0] : "");
if( NULL != btl_list ) {
free(btl_list);
btl_list = NULL;
}
/*
* Re-select the BTL components/modules
* This will cause the BTL components to discover the available
* network options on this machine, and post proper modex informaiton.
*/
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if( OMPI_SUCCESS != (ret = mca_btl_base_select(OPAL_ENABLE_PROGRESS_THREADS,
OMPI_ENABLE_THREAD_MULTIPLE) ) ) {
opal_output(0, "bml:r2: ft_event(Restart): Failed to select in BTL framework\n");
return ret;
}
/*
* Clear some structures so we can properly repopulate them
*/
mca_bml_r2.btls_added = false;
for(p = 0; p < (int)num_procs; ++p) {
if( NULL != procs[p]->proc_endpoints[OMPI_PROC_ENDPOINT_TAG_BML]) {
OBJ_RELEASE(procs[p]->proc_endpoints[OMPI_PROC_ENDPOINT_TAG_BML]);
procs[p]->proc_endpoints[OMPI_PROC_ENDPOINT_TAG_BML] = NULL;
}
OBJ_RELEASE(procs[p]);
}
if( NULL != procs ) {
free(procs);
procs = NULL;
}
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
#endif
return OMPI_SUCCESS;
}