1
1
openmpi/ompi/mca/coll/tuned/coll_tuned_alltoallv.c

324 строки
14 KiB
C
Исходник Обычный вид История

MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2012 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2008 Sun Microsystems, Inc. All rights reserved.
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
* Copyright (c) 2013 Los Alamos National Security, LLC. All Rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "mpi.h"
#include "ompi/constants.h"
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 04:56:31 +00:00
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/coll.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/pml/pml.h"
#include "coll_tuned.h"
#include "coll_tuned_topo.h"
#include "coll_tuned_util.h"
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
/* alltoallv algorithm variables */
static int coll_tuned_alltoallv_algorithm_count = 2;
static int coll_tuned_alltoallv_forced_algorithm = 0;
/* valid values for coll_tuned_alltoallv_forced_algorithm */
static mca_base_var_enum_value_t alltoallv_algorithms[] = {
{0, "ignore"},
{1, "basic_linear"},
{2, "pairwise"},
{0, NULL}
};
int
ompi_coll_tuned_alltoallv_intra_pairwise(void *sbuf, int *scounts, int *sdisps,
struct ompi_datatype_t *sdtype,
void* rbuf, int *rcounts, int *rdisps,
struct ompi_datatype_t *rdtype,
struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
int line = -1, err = 0, rank, size, step = 0, sendto, recvfrom;
void *psnd, *prcv;
ptrdiff_t sext, rext;
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,
"coll:tuned:alltoallv_intra_pairwise rank %d", rank));
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 04:56:31 +00:00
ompi_datatype_type_extent(sdtype, &sext);
ompi_datatype_type_extent(rdtype, &rext);
/* Perform pairwise exchange starting from 1 since local exhange is done */
for (step = 0; step < size; step++) {
/* Determine sender and receiver for this step. */
sendto = (rank + step) % size;
recvfrom = (rank + size - step) % size;
/* Determine sending and receiving locations */
psnd = (char*)sbuf + (ptrdiff_t)sdisps[sendto] * sext;
prcv = (char*)rbuf + (ptrdiff_t)rdisps[recvfrom] * rext;
/* send and receive */
err = ompi_coll_tuned_sendrecv( psnd, scounts[sendto], sdtype, sendto,
MCA_COLL_BASE_TAG_ALLTOALLV,
prcv, rcounts[recvfrom], rdtype, recvfrom,
MCA_COLL_BASE_TAG_ALLTOALLV,
comm, MPI_STATUS_IGNORE, rank);
if (MPI_SUCCESS != err) { line = __LINE__; goto err_hndl; }
}
return MPI_SUCCESS;
err_hndl:
OPAL_OUTPUT((ompi_coll_tuned_stream,
"%s:%4d\tError occurred %d, rank %2d at step %d", __FILE__, line,
err, rank, step));
return err;
}
/*
* Linear functions are copied from the basic coll module. For
* some small number of nodes and/or small data sizes they are just as
* fast as tuned/tree based segmenting operations and as such may be
* selected by the decision functions. These are copied into this module
* due to the way we select modules in V1. i.e. in V2 we will handle this
* differently and so will not have to duplicate code.
* GEF Oct05 after asking Jeff.
*/
int
ompi_coll_tuned_alltoallv_intra_basic_linear(void *sbuf, int *scounts, int *sdisps,
struct ompi_datatype_t *sdtype,
void *rbuf, int *rcounts, int *rdisps,
struct ompi_datatype_t *rdtype,
struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
int i, size, rank, err, nreqs;
char *psnd, *prcv;
ptrdiff_t sext, rext;
MPI_Request *preq;
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
size = ompi_comm_size(comm);
rank = ompi_comm_rank(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,
"coll:tuned:alltoallv_intra_basic_linear rank %d", rank));
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 04:56:31 +00:00
ompi_datatype_type_extent(sdtype, &sext);
ompi_datatype_type_extent(rdtype, &rext);
/* Simple optimization - handle send to self first */
psnd = ((char *) sbuf) + (ptrdiff_t)sdisps[rank] * sext;
prcv = ((char *) rbuf) + (ptrdiff_t)rdisps[rank] * rext;
if (0 != scounts[rank]) {
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 04:56:31 +00:00
err = ompi_datatype_sndrcv(psnd, scounts[rank], sdtype,
prcv, rcounts[rank], rdtype);
if (MPI_SUCCESS != err) {
return err;
}
}
/* If only one process, we're done. */
if (1 == size) {
return MPI_SUCCESS;
}
/* Now, initiate all send/recv to/from others. */
nreqs = 0;
preq = data->mcct_reqs;
/* Post all receives first */
for (i = 0; i < size; ++i) {
if (i == rank || 0 == rcounts[i]) {
continue;
}
prcv = ((char *) rbuf) + (ptrdiff_t)rdisps[i] * rext;
err = MCA_PML_CALL(irecv_init(prcv, rcounts[i], rdtype,
i, MCA_COLL_BASE_TAG_ALLTOALLV, comm,
preq++));
++nreqs;
if (MPI_SUCCESS != err) {
ompi_coll_tuned_free_reqs(data->mcct_reqs, nreqs);
return err;
}
}
/* Now post all sends */
for (i = 0; i < size; ++i) {
if (i == rank || 0 == scounts[i]) {
continue;
}
psnd = ((char *) sbuf) + (ptrdiff_t)sdisps[i] * sext;
err = MCA_PML_CALL(isend_init(psnd, scounts[i], sdtype,
i, MCA_COLL_BASE_TAG_ALLTOALLV,
MCA_PML_BASE_SEND_STANDARD, comm,
preq++));
++nreqs;
if (MPI_SUCCESS != err) {
ompi_coll_tuned_free_reqs(data->mcct_reqs, nreqs);
return err;
}
}
/* Start your engines. This will never return an error. */
MCA_PML_CALL(start(nreqs, data->mcct_reqs));
/* Wait for them all. If there's an error, note that we don't care
* what the error was -- just that there *was* an error. The PML
* will finish all requests, even if one or more of them fail.
* i.e., by the end of this call, all the requests are free-able.
* So free them anyway -- even if there was an error, and return the
* error after we free everything. */
err = ompi_request_wait_all(nreqs, data->mcct_reqs,
MPI_STATUSES_IGNORE);
/* Free the requests. */
ompi_coll_tuned_free_reqs(data->mcct_reqs, nreqs);
return err;
}
/*
* The following are used by dynamic and forced rules. Publish
* details of each algorithm and if its forced/fixed/locked in as you add
* methods/algorithms you must update this and the query/map routines.
* This routine is called by the component only. This makes sure that
* the mca parameters are set to their initial values and perms.
* Module does not call this. They call the forced_getvalues routine
* instead.
*/
int ompi_coll_tuned_alltoallv_intra_check_forced_init(coll_tuned_force_algorithm_mca_param_indices_t
*mca_param_indices)
{
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-27 21:09:41 +00:00
mca_base_var_enum_t *new_enum;
ompi_coll_tuned_forced_max_algorithms[ALLTOALLV] = coll_tuned_alltoallv_algorithm_count;
(void) mca_base_component_var_register(&mca_coll_tuned_component.super.collm_version,
"alltoallv_algorithm_count",
"Number of alltoallv algorithms available",
MCA_BASE_VAR_TYPE_INT, NULL, 0,
MCA_BASE_VAR_FLAG_DEFAULT_ONLY,
OPAL_INFO_LVL_5,
MCA_BASE_VAR_SCOPE_CONSTANT,
&coll_tuned_alltoallv_algorithm_count);
/* MPI_T: This variable should eventually be bound to a communicator */
coll_tuned_alltoallv_forced_algorithm = 0;
(void) mca_base_var_enum_create("coll_tuned_alltoallv_algorithms", alltoallv_algorithms, &new_enum);
mca_param_indices->algorithm_param_index =
mca_base_component_var_register(&mca_coll_tuned_component.super.collm_version,
"alltoallv_algorithm",
"Which alltoallv algorithm is used. "
"Can be locked down to choice of: 0 ignore, "
"1 basic linear, 2 pairwise.",
MCA_BASE_VAR_TYPE_INT, new_enum, 0, 0,
OPAL_INFO_LVL_5,
MCA_BASE_VAR_SCOPE_READONLY,
&coll_tuned_alltoallv_forced_algorithm);
OBJ_RELEASE(new_enum);
if (mca_param_indices->algorithm_param_index < 0) {
return mca_param_indices->algorithm_param_index;
}
return (MPI_SUCCESS);
}
int ompi_coll_tuned_alltoallv_intra_do_forced(void *sbuf, int *scounts, int *sdisps,
struct ompi_datatype_t *sdtype,
void* rbuf, int *rcounts, int *rdisps,
struct ompi_datatype_t *rdtype,
struct ompi_communicator_t *comm,
mca_coll_base_module_t *module)
{
mca_coll_tuned_module_t *tuned_module = (mca_coll_tuned_module_t*) module;
mca_coll_tuned_comm_t *data = tuned_module->tuned_data;
OPAL_OUTPUT((ompi_coll_tuned_stream,
"coll:tuned:alltoallv_intra_do_forced selected algorithm %d",
data->user_forced[ALLTOALLV].algorithm));
switch (data->user_forced[ALLTOALLV].algorithm) {
case (0):
return ompi_coll_tuned_alltoallv_intra_dec_fixed(sbuf, scounts, sdisps, sdtype,
rbuf, rcounts, rdisps, rdtype,
comm, module);
case (1):
return ompi_coll_tuned_alltoallv_intra_basic_linear(sbuf, scounts, sdisps, sdtype,
rbuf, rcounts, rdisps, rdtype,
comm, module);
case (2):
return ompi_coll_tuned_alltoallv_intra_pairwise(sbuf, scounts, sdisps, sdtype,
rbuf, rcounts, rdisps, rdtype,
comm, module);
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,
"coll:tuned:alltoallv_intra_do_forced attempt to "
"select algorithm %d when only 0-%d is valid.",
data->user_forced[ALLTOALLV].algorithm,
ompi_coll_tuned_forced_max_algorithms[ALLTOALLV]));
return (MPI_ERR_ARG);
}
}
/* If the user selects dynamic rules and specifies the algorithm to
* use, then this function is called. */
int ompi_coll_tuned_alltoallv_intra_do_this(void *sbuf, int *scounts, int *sdisps,
struct ompi_datatype_t *sdtype,
void* rbuf, int *rcounts, int *rdisps,
struct ompi_datatype_t *rdtype,
struct ompi_communicator_t *comm,
mca_coll_base_module_t *module,
int algorithm)
{
OPAL_OUTPUT((ompi_coll_tuned_stream,
"coll:tuned:alltoallv_intra_do_this selected algorithm %d ",
algorithm));
switch (algorithm) {
case (0):
return ompi_coll_tuned_alltoallv_intra_dec_fixed(sbuf, scounts, sdisps, sdtype,
rbuf, rcounts, rdisps, rdtype,
comm, module);
case (1):
return ompi_coll_tuned_alltoallv_intra_basic_linear(sbuf, scounts, sdisps, sdtype,
rbuf, rcounts, rdisps, rdtype,
comm, module);
case (2):
return ompi_coll_tuned_alltoallv_intra_pairwise(sbuf, scounts, sdisps, sdtype,
rbuf, rcounts, rdisps, rdtype,
comm, module);
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,
"coll:tuned:alltoall_intra_do_this attempt to select "
"algorithm %d when only 0-%d is valid.",
algorithm, ompi_coll_tuned_forced_max_algorithms[ALLTOALLV]));
return (MPI_ERR_ARG);
}
}