1
1

836 строки
25 KiB
C
Исходник Обычный вид История

/* Malloc implementation for multiple threads without lock contention.
Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Wolfram Gloger <wg@malloc.de>, 2001.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* $Id: hooks.c,v 1.12 2004/11/05 14:42:32 wg Exp $ */
#ifndef DEFAULT_CHECK_ACTION
#define DEFAULT_CHECK_ACTION 1
#endif
/* What to do if the standard debugging hooks are in place and a
corrupt pointer is detected: do nothing (0), print an error message
(1), or call abort() (2). */
/* Hooks for debugging versions. The initial hooks just call the
initialization routine, then do the normal work. */
#if !(USE_STARTER & 2)
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
/* OMPI change: these aren't used (avoid a compiler warning by if
0'ing them out */
#if 0
static Void_t*
#if __STD_C
malloc_hook_ini(size_t sz, const __malloc_ptr_t caller)
#else
malloc_hook_ini(sz, caller)
size_t sz; const __malloc_ptr_t caller;
#endif
{
__malloc_hook = NULL;
ptmalloc_init();
return public_mALLOc(sz);
}
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
#endif
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
/* OMPI change: these aren't used (avoid a compiler warning by if
0'ing them out */
#if 0
static Void_t*
#if __STD_C
realloc_hook_ini(Void_t* ptr, size_t sz, const __malloc_ptr_t caller)
#else
realloc_hook_ini(ptr, sz, caller)
Void_t* ptr; size_t sz; const __malloc_ptr_t caller;
#endif
{
__malloc_hook = NULL;
__realloc_hook = NULL;
ptmalloc_init();
return public_rEALLOc(ptr, sz);
}
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
#endif
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
/* OMPI change: these aren't used (avoid a compiler warning by if
0'ing them out */
#if 0
static Void_t*
#if __STD_C
memalign_hook_ini(size_t alignment, size_t sz, const __malloc_ptr_t caller)
#else
memalign_hook_ini(alignment, sz, caller)
size_t alignment; size_t sz; const __malloc_ptr_t caller;
#endif
{
__memalign_hook = NULL;
ptmalloc_init();
return public_mEMALIGn(alignment, sz);
}
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
#endif
#endif /* !(USE_STARTER & 2) */
static int check_action = DEFAULT_CHECK_ACTION;
/* Whether we are using malloc checking. */
static int using_malloc_checking;
/* A flag that is set by malloc_set_state, to signal that malloc checking
must not be enabled on the request from the user (via the MALLOC_CHECK_
environment variable). It is reset by __malloc_check_init to tell
malloc_set_state that the user has requested malloc checking.
The purpose of this flag is to make sure that malloc checking is not
enabled when the heap to be restored was constructed without malloc
checking, and thus does not contain the required magic bytes.
Otherwise the heap would be corrupted by calls to free and realloc. If
it turns out that the heap was created with malloc checking and the
user has requested it malloc_set_state just calls __malloc_check_init
again to enable it. On the other hand, reusing such a heap without
further malloc checking is safe. */
static int disallow_malloc_check;
/* Activate a standard set of debugging hooks. */
void
__malloc_check_init()
{
if (disallow_malloc_check) {
disallow_malloc_check = 0;
return;
}
using_malloc_checking = 1;
__malloc_hook = malloc_check;
__free_hook = free_check;
__realloc_hook = realloc_check;
__memalign_hook = memalign_check;
if(check_action & 1)
fprintf(stderr, "malloc: using debugging hooks\n");
}
/* A simple, standard set of debugging hooks. Overhead is `only' one
byte per chunk; still this will catch most cases of double frees or
overruns. The goal here is to avoid obscure crashes due to invalid
usage, unlike in the MALLOC_DEBUG code. */
#define MAGICBYTE(p) ( ( ((size_t)p >> 3) ^ ((size_t)p >> 11)) & 0xFF )
/* Instrument a chunk with overrun detector byte(s) and convert it
into a user pointer with requested size sz. */
static Void_t*
internal_function
#if __STD_C
mem2mem_check(Void_t *ptr, size_t sz)
#else
mem2mem_check(ptr, sz) Void_t *ptr; size_t sz;
#endif
{
mchunkptr p;
unsigned char* m_ptr = (unsigned char*)BOUNDED_N(ptr, sz);
size_t i;
if (!ptr)
return ptr;
p = mem2chunk(ptr);
for(i = chunksize(p) - (chunk_is_mmapped(p) ? 2*SIZE_SZ+1 : SIZE_SZ+1);
i > sz;
i -= 0xFF) {
if(i-sz < 0x100) {
m_ptr[i] = (unsigned char)(i-sz);
break;
}
m_ptr[i] = 0xFF;
}
m_ptr[sz] = MAGICBYTE(p);
return (Void_t*)m_ptr;
}
/* Convert a pointer to be free()d or realloc()ed to a valid chunk
pointer. If the provided pointer is not valid, return NULL. */
static mchunkptr
internal_function
#if __STD_C
mem2chunk_check(Void_t* mem)
#else
mem2chunk_check(mem) Void_t* mem;
#endif
{
mchunkptr p;
INTERNAL_SIZE_T sz, c;
unsigned char magic;
if(!aligned_OK(mem)) return NULL;
p = mem2chunk(mem);
if (!chunk_is_mmapped(p)) {
/* Must be a chunk in conventional heap memory. */
int contig = contiguous(&main_arena);
sz = chunksize(p);
if((contig &&
((char*)p<mp_.sbrk_base ||
((char*)p + sz)>=(mp_.sbrk_base+main_arena.system_mem) )) ||
sz<MINSIZE || sz&MALLOC_ALIGN_MASK || !inuse(p) ||
( !prev_inuse(p) && (p->prev_size&MALLOC_ALIGN_MASK ||
(contig && (char*)prev_chunk(p)<mp_.sbrk_base) ||
next_chunk(prev_chunk(p))!=p) ))
return NULL;
magic = MAGICBYTE(p);
for(sz += SIZE_SZ-1; (c = ((unsigned char*)p)[sz]) != magic; sz -= c) {
if(c<=0 || sz<(c+2*SIZE_SZ)) return NULL;
}
((unsigned char*)p)[sz] ^= 0xFF;
} else {
unsigned long offset, page_mask = malloc_getpagesize-1;
/* mmap()ed chunks have MALLOC_ALIGNMENT or higher power-of-two
alignment relative to the beginning of a page. Check this
first. */
offset = (unsigned long)mem & page_mask;
if((offset!=MALLOC_ALIGNMENT && offset!=0 && offset!=0x10 &&
offset!=0x20 && offset!=0x40 && offset!=0x80 && offset!=0x100 &&
offset!=0x200 && offset!=0x400 && offset!=0x800 && offset!=0x1000 &&
offset<0x2000) ||
!chunk_is_mmapped(p) || (p->size & PREV_INUSE) ||
( (((unsigned long)p - p->prev_size) & page_mask) != 0 ) ||
( (sz = chunksize(p)), ((p->prev_size + sz) & page_mask) != 0 ) )
return NULL;
magic = MAGICBYTE(p);
for(sz -= 1; (c = ((unsigned char*)p)[sz]) != magic; sz -= c) {
if(c<=0 || sz<(c+2*SIZE_SZ)) return NULL;
}
((unsigned char*)p)[sz] ^= 0xFF;
}
return p;
}
/* Check for corruption of the top chunk, and try to recover if
necessary. */
static int
internal_function
#if __STD_C
top_check(void)
#else
top_check()
#endif
{
mchunkptr t = top(&main_arena);
char* brk, * new_brk;
INTERNAL_SIZE_T front_misalign, sbrk_size;
unsigned long pagesz = malloc_getpagesize;
if (t == initial_top(&main_arena) ||
(!chunk_is_mmapped(t) &&
chunksize(t)>=MINSIZE &&
prev_inuse(t) &&
(!contiguous(&main_arena) ||
(char*)t + chunksize(t) == mp_.sbrk_base + main_arena.system_mem)))
return 0;
if(check_action & 1)
fprintf(stderr, "malloc: top chunk is corrupt\n");
if(check_action & 2)
abort();
/* Try to set up a new top chunk. */
brk = MORECORE(0);
front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
if (front_misalign > 0)
front_misalign = MALLOC_ALIGNMENT - front_misalign;
sbrk_size = front_misalign + mp_.top_pad + MINSIZE;
sbrk_size += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
new_brk = (char*)(MORECORE (sbrk_size));
if (new_brk == (char*)(MORECORE_FAILURE)) return -1;
/* Call the `morecore' hook if necessary. */
if (__after_morecore_hook)
(*__after_morecore_hook) ();
main_arena.system_mem = (new_brk - mp_.sbrk_base) + sbrk_size;
top(&main_arena) = (mchunkptr)(brk + front_misalign);
set_head(top(&main_arena), (sbrk_size - front_misalign) | PREV_INUSE);
return 0;
}
static Void_t*
#if __STD_C
malloc_check(size_t sz, const Void_t *caller)
#else
malloc_check(sz, caller) size_t sz; const Void_t *caller;
#endif
{
Void_t *victim;
(void)mutex_lock(&main_arena.mutex);
victim = (top_check() >= 0) ? _int_malloc(&main_arena, sz+1) : NULL;
(void)mutex_unlock(&main_arena.mutex);
return mem2mem_check(victim, sz);
}
static void
#if __STD_C
free_check(Void_t* mem, const Void_t *caller)
#else
free_check(mem, caller) Void_t* mem; const Void_t *caller;
#endif
{
mchunkptr p;
if(!mem) return;
(void)mutex_lock(&main_arena.mutex);
p = mem2chunk_check(mem);
if(!p) {
(void)mutex_unlock(&main_arena.mutex);
if(check_action & 1)
fprintf(stderr, "free(): invalid pointer %p!\n", mem);
if(check_action & 2)
abort();
return;
}
#if HAVE_MMAP
if (chunk_is_mmapped(p)) {
(void)mutex_unlock(&main_arena.mutex);
munmap_chunk(p);
return;
}
#endif
#if 0 /* Erase freed memory. */
memset(mem, 0, chunksize(p) - (SIZE_SZ+1));
#endif
_int_free(&main_arena, mem);
(void)mutex_unlock(&main_arena.mutex);
}
static Void_t*
#if __STD_C
realloc_check(Void_t* oldmem, size_t bytes, const Void_t *caller)
#else
realloc_check(oldmem, bytes, caller)
Void_t* oldmem; size_t bytes; const Void_t *caller;
#endif
{
mchunkptr oldp;
INTERNAL_SIZE_T nb, oldsize;
Void_t* newmem = 0;
if (oldmem == 0) return malloc_check(bytes, NULL);
(void)mutex_lock(&main_arena.mutex);
oldp = mem2chunk_check(oldmem);
(void)mutex_unlock(&main_arena.mutex);
if(!oldp) {
if(check_action & 1)
fprintf(stderr, "realloc(): invalid pointer %p!\n", oldmem);
if(check_action & 2)
abort();
return malloc_check(bytes, NULL);
}
oldsize = chunksize(oldp);
checked_request2size(bytes+1, nb);
(void)mutex_lock(&main_arena.mutex);
#if HAVE_MMAP
if (chunk_is_mmapped(oldp)) {
#if HAVE_MREMAP
mchunkptr newp = mremap_chunk(oldp, nb);
if(newp)
newmem = chunk2mem(newp);
else
#endif
{
/* Note the extra SIZE_SZ overhead. */
if(oldsize - SIZE_SZ >= nb)
newmem = oldmem; /* do nothing */
else {
/* Must alloc, copy, free. */
if (top_check() >= 0)
newmem = _int_malloc(&main_arena, bytes+1);
if (newmem) {
MALLOC_COPY(BOUNDED_N(newmem, bytes+1), oldmem, oldsize - 2*SIZE_SZ);
munmap_chunk(oldp);
}
}
}
} else {
#endif /* HAVE_MMAP */
if (top_check() >= 0)
newmem = _int_realloc(&main_arena, oldmem, bytes+1);
#if 0 /* Erase freed memory. */
if(newmem)
newp = mem2chunk(newmem);
nb = chunksize(newp);
if(oldp<newp || oldp>=chunk_at_offset(newp, nb)) {
memset((char*)oldmem + 2*sizeof(mbinptr), 0,
oldsize - (2*sizeof(mbinptr)+2*SIZE_SZ+1));
} else if(nb > oldsize+SIZE_SZ) {
memset((char*)BOUNDED_N(chunk2mem(newp), bytes) + oldsize,
0, nb - (oldsize+SIZE_SZ));
}
#endif
#if HAVE_MMAP
}
#endif
(void)mutex_unlock(&main_arena.mutex);
return mem2mem_check(newmem, bytes);
}
static Void_t*
#if __STD_C
memalign_check(size_t alignment, size_t bytes, const Void_t *caller)
#else
memalign_check(alignment, bytes, caller)
size_t alignment; size_t bytes; const Void_t *caller;
#endif
{
INTERNAL_SIZE_T nb;
Void_t* mem;
if (alignment <= MALLOC_ALIGNMENT) return malloc_check(bytes, NULL);
if (alignment < MINSIZE) alignment = MINSIZE;
checked_request2size(bytes+1, nb);
(void)mutex_lock(&main_arena.mutex);
mem = (top_check() >= 0) ? _int_memalign(&main_arena, alignment, bytes+1) :
NULL;
(void)mutex_unlock(&main_arena.mutex);
return mem2mem_check(mem, bytes);
}
#if !defined NO_THREADS && USE_STARTER
/* The following hooks are used when the global initialization in
ptmalloc_init() hasn't completed yet. */
static Void_t*
#if __STD_C
malloc_starter(size_t sz, const Void_t *caller)
#else
malloc_starter(sz, caller) size_t sz; const Void_t *caller;
#endif
{
Void_t* victim;
ptmalloc_init_minimal();
victim = _int_malloc(&main_arena, sz);
return victim ? BOUNDED_N(victim, sz) : 0;
}
static Void_t*
#if __STD_C
memalign_starter(size_t align, size_t sz, const Void_t *caller)
#else
memalign_starter(align, sz, caller) size_t align, sz; const Void_t *caller;
#endif
{
Void_t* victim;
ptmalloc_init_minimal();
victim = _int_memalign(&main_arena, align, sz);
return victim ? BOUNDED_N(victim, sz) : 0;
}
static void
#if __STD_C
free_starter(Void_t* mem, const Void_t *caller)
#else
free_starter(mem, caller) Void_t* mem; const Void_t *caller;
#endif
{
mchunkptr p;
if(!mem) return;
p = mem2chunk(mem);
#if HAVE_MMAP
if (chunk_is_mmapped(p)) {
munmap_chunk(p);
return;
}
#endif
_int_free(&main_arena, mem);
}
#endif /* !defined NO_THREADS && USE_STARTER */
/* Get/set state: malloc_get_state() records the current state of all
malloc variables (_except_ for the actual heap contents and `hook'
function pointers) in a system dependent, opaque data structure.
This data structure is dynamically allocated and can be free()d
after use. malloc_set_state() restores the state of all malloc
variables to the previously obtained state. This is especially
useful when using this malloc as part of a shared library, and when
the heap contents are saved/restored via some other method. The
primary example for this is GNU Emacs with its `dumping' procedure.
`Hook' function pointers are never saved or restored by these
functions, with two exceptions: If malloc checking was in use when
malloc_get_state() was called, then malloc_set_state() calls
__malloc_check_init() if possible; if malloc checking was not in
use in the recorded state but the user requested malloc checking,
then the hooks are reset to 0. */
#define MALLOC_STATE_MAGIC 0x444c4541l
#define MALLOC_STATE_VERSION (0*0x100l + 2l) /* major*0x100 + minor */
struct malloc_save_state {
long magic;
long version;
mbinptr av[NBINS * 2 + 2];
char* sbrk_base;
int sbrked_mem_bytes;
unsigned long trim_threshold;
unsigned long top_pad;
unsigned int n_mmaps_max;
unsigned long mmap_threshold;
int check_action;
unsigned long max_sbrked_mem;
unsigned long max_total_mem;
unsigned int n_mmaps;
unsigned int max_n_mmaps;
unsigned long mmapped_mem;
unsigned long max_mmapped_mem;
int using_malloc_checking;
};
Void_t*
public_gET_STATe(void)
{
struct malloc_save_state* ms;
int i;
mbinptr b;
ms = (struct malloc_save_state*)public_mALLOc(sizeof(*ms));
if (!ms)
return 0;
(void)mutex_lock(&main_arena.mutex);
malloc_consolidate(&main_arena);
ms->magic = MALLOC_STATE_MAGIC;
ms->version = MALLOC_STATE_VERSION;
ms->av[0] = 0;
ms->av[1] = 0; /* used to be binblocks, now no longer used */
ms->av[2] = top(&main_arena);
ms->av[3] = 0; /* used to be undefined */
for(i=1; i<NBINS; i++) {
b = bin_at(&main_arena, i);
if(first(b) == b)
ms->av[2*i+2] = ms->av[2*i+3] = 0; /* empty bin */
else {
ms->av[2*i+2] = first(b);
ms->av[2*i+3] = last(b);
}
}
ms->sbrk_base = mp_.sbrk_base;
ms->sbrked_mem_bytes = main_arena.system_mem;
ms->trim_threshold = mp_.trim_threshold;
ms->top_pad = mp_.top_pad;
ms->n_mmaps_max = mp_.n_mmaps_max;
ms->mmap_threshold = mp_.mmap_threshold;
ms->check_action = check_action;
ms->max_sbrked_mem = main_arena.max_system_mem;
#ifdef NO_THREADS
ms->max_total_mem = mp_.max_total_mem;
#else
ms->max_total_mem = 0;
#endif
ms->n_mmaps = mp_.n_mmaps;
ms->max_n_mmaps = mp_.max_n_mmaps;
ms->mmapped_mem = mp_.mmapped_mem;
ms->max_mmapped_mem = mp_.max_mmapped_mem;
ms->using_malloc_checking = using_malloc_checking;
(void)mutex_unlock(&main_arena.mutex);
return (Void_t*)ms;
}
int
public_sET_STATe(Void_t* msptr)
{
struct malloc_save_state* ms = (struct malloc_save_state*)msptr;
int i;
mbinptr b;
disallow_malloc_check = 1;
ptmalloc_init();
if(ms->magic != MALLOC_STATE_MAGIC) return -1;
/* Must fail if the major version is too high. */
if((ms->version & ~0xffl) > (MALLOC_STATE_VERSION & ~0xffl)) return -2;
(void)mutex_lock(&main_arena.mutex);
/* There are no fastchunks. */
clear_fastchunks(&main_arena);
set_max_fast(&main_arena, DEFAULT_MXFAST);
for (i=0; i<(int)NFASTBINS; ++i)
main_arena.fastbins[i] = 0;
for (i=0; i<(int)BINMAPSIZE; ++i)
main_arena.binmap[i] = 0;
top(&main_arena) = ms->av[2];
main_arena.last_remainder = 0;
for(i=1; i<NBINS; i++) {
b = bin_at(&main_arena, i);
if(ms->av[2*i+2] == 0) {
assert(ms->av[2*i+3] == 0);
first(b) = last(b) = b;
} else {
if(i<(int)NSMALLBINS || ((int)largebin_index(chunksize(ms->av[2*i+2]))==i &&
(int)largebin_index(chunksize(ms->av[2*i+3]))==i)) {
first(b) = ms->av[2*i+2];
last(b) = ms->av[2*i+3];
/* Make sure the links to the bins within the heap are correct. */
first(b)->bk = b;
last(b)->fd = b;
/* Set bit in binblocks. */
mark_bin(&main_arena, i);
} else {
/* Oops, index computation from chunksize must have changed.
Link the whole list into unsorted_chunks. */
first(b) = last(b) = b;
b = unsorted_chunks(&main_arena);
ms->av[2*i+2]->bk = b;
ms->av[2*i+3]->fd = b->fd;
b->fd->bk = ms->av[2*i+3];
b->fd = ms->av[2*i+2];
}
}
}
mp_.sbrk_base = ms->sbrk_base;
main_arena.system_mem = ms->sbrked_mem_bytes;
mp_.trim_threshold = ms->trim_threshold;
mp_.top_pad = ms->top_pad;
mp_.n_mmaps_max = ms->n_mmaps_max;
mp_.mmap_threshold = ms->mmap_threshold;
check_action = ms->check_action;
main_arena.max_system_mem = ms->max_sbrked_mem;
#ifdef NO_THREADS
mp_.max_total_mem = ms->max_total_mem;
#endif
mp_.n_mmaps = ms->n_mmaps;
mp_.max_n_mmaps = ms->max_n_mmaps;
mp_.mmapped_mem = ms->mmapped_mem;
mp_.max_mmapped_mem = ms->max_mmapped_mem;
/* add version-dependent code here */
if (ms->version >= 1) {
/* Check whether it is safe to enable malloc checking, or whether
it is necessary to disable it. */
if (ms->using_malloc_checking && !using_malloc_checking &&
!disallow_malloc_check)
__malloc_check_init ();
else if (!ms->using_malloc_checking && using_malloc_checking) {
__malloc_hook = 0;
__free_hook = 0;
__realloc_hook = 0;
__memalign_hook = 0;
using_malloc_checking = 0;
}
}
check_malloc_state(&main_arena);
(void)mutex_unlock(&main_arena.mutex);
return 0;
}
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
/*-------------------------------------------------------------------------
OMPI change: Per
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
http://www.gnu.org/software/libc/manual/html_mono/libc.html#Hooks-for-Malloc,
we can define the __malloc_initialize_hook variable to be a
function that is invoked before the first allocation is ever
performed. We use this hook to wholly replace the underlying
allocator to our own allocator if a few conditions are met.
Remember that this hook is called probably at the very very very
beginning of the process. MCA parameters haven't been setup yet --
darn near nothing has been setup yet. Indeed, we're effectively in
signal context because we can't call anything that calls malloc.
So we can basically have some hard-coded tests for things to see if
we want to setup to use our internal ptmalloc2 or not. */
static void *opal_memory_ptmalloc2_malloc_hook(size_t sz,
const __malloc_ptr_t caller)
{
return public_mALLOc(sz);
}
static void *opal_memory_ptmalloc2_realloc_hook(Void_t* ptr, size_t sz,
const __malloc_ptr_t caller)
{
return public_rEALLOc(ptr, sz);
}
static void *opal_memory_ptmalloc2_memalign_hook(size_t alignment, size_t sz,
const __malloc_ptr_t caller)
{
return public_mEMALIGn(alignment, sz);
}
static void opal_memory_ptmalloc2_free_hook(__malloc_ptr_t __ptr,
const __malloc_ptr_t caller)
{
public_fREe(__ptr);
}
typedef enum {
RESULT_NO,
RESULT_YES,
RESULT_RUNTIME,
RESULT_NOT_FOUND
} check_result_t;
static check_result_t check(const char *name)
{
char *s = getenv(name);
if (NULL == s) {
return RESULT_NOT_FOUND;
}
if ('0' == s[0] && '\0' == s[1]) {
/* A value of 0 means "don't use!" */
return RESULT_NO;
} else if ('-' == s[0] && '1' == s[1] && '\0' == s[2]) {
/* A value of -1 means "use it if it would be advantageous */
return RESULT_RUNTIME;
} else {
/* Any other value means "use the hooks, Luke!" */
return RESULT_YES;
}
}
/* OMPI's init function */
static void opal_memory_ptmalloc2_malloc_init_hook(void)
{
/* Yes, checking for an MPI MCA parameter here is an abstraction
violation. Cope. Yes, even checking for *any* MCA parameter
here (without going through the MCA param API) is an
abstraction violation. Fricken' cope, will ya?
(unfortunately, there's really no good way to do this other
than this abstraction violation :-( ) */
struct stat st;
check_result_t r1, r2;
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
check_result_t lp = check("OMPI_MCA_mpi_leave_pinned");
check_result_t lpp = check("OMPI_MCA_mpi_leave_pinned_pipeline");
bool want_rcache = false, found_driver = false;
/* See if we want to disable this component. This check is
necessary for some environments -- for example, Debian's
"fakeroot" build environment allocates memory during stat(),
causing Badness (see http://bugs.debian.org/531522).
$FAKEROOTKEY is set by Debian's "fakeroot" build environment;
check for that explicitly. */
r1 = check("OMPI_MCA_memory_ptmalloc2_disable");
r2 = check("FAKEROOTKEY");
if ((RESULT_NOT_FOUND != r1 && RESULT_NO != r1) ||
(RESULT_NOT_FOUND != r2 && RESULT_NO != r2)) {
return;
}
/* Look for sentinel files (directories) to see if various network
drivers are loaded (yes, I know, further abstraction
violations...).
* All OpenFabrics devices will have files in
/sys/class/infiniband (even iWARP)
* Open-MX doesn't currently use a reg cache, but it might
someday. So be conservative and check for /dev/open-mx.
* MX will have one or more of /dev/myri[0-9]. Yuck.
*/
if (0 == stat("/sys/class/infiniband", &st) ||
0 == stat("/dev/open-mx", &st) ||
0 == stat("/dev/myri0", &st) ||
0 == stat("/dev/myri1", &st) ||
0 == stat("/dev/myri2", &st) ||
0 == stat("/dev/myri3", &st) ||
0 == stat("/dev/myri4", &st) ||
0 == stat("/dev/myri5", &st) ||
0 == stat("/dev/myri6", &st) ||
0 == stat("/dev/myri7", &st) ||
0 == stat("/dev/myri8", &st) ||
0 == stat("/dev/myri9", &st) ||
0 == stat("/dev/ipath", &st)) {
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
found_driver = true;
}
/* Simple combination of the results of these two environment
variables (if both "yes" and "no" are specified, then be
conservative and assume "yes"):
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
lp / lpp yes no runtime not found
yes yes yes yes yes
no yes no no no
runtime yes no runtime runtime
not found yes no runtime runtime
*/
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
if (RESULT_YES == lp || RESULT_YES == lpp) {
want_rcache = true;
} else if (RESULT_NO == lp || RESULT_NO == lpp) {
want_rcache = false;
} else {
want_rcache = found_driver;
}
if (want_rcache) {
/* Initialize ptmalloc */
ptmalloc_init();
/* Now set the hooks to point to our functions */
__free_hook = opal_memory_ptmalloc2_free_hook;
__malloc_hook = opal_memory_ptmalloc2_malloc_hook;
__memalign_hook = opal_memory_ptmalloc2_memalign_hook;
__realloc_hook = opal_memory_ptmalloc2_realloc_hook;
}
}
/* OMPI change: prototype the function below, otherwise we'll get
warnings about it not being declared (at least in developer/debug
builds). This function is not DECLSPEC'ed because we don't want it
visible outside of this component (i.e., libopen-pal, since this
component is never built as a DSO; it's always slurped into
libopen-pal). This declaration is not in malloc.h because this
function only exists as a horrid workaround to force linkers to
pull in this .o file (see explanation below). */
void *opal_memory_ptmalloc2_hook_pull(void);
/* OMPI change: add a dummy function here that will be called by the
ptmalloc2 component open() function. This dummy function is
necessary for when OMPI is built as --disable-shared
--enable-static --disable-dlopen, because we won't use
-Wl,--export-dynamic when building OMPI. So we need to ensure that
not only that all the symbols in this file end up in libopen-pal.a,
but they also end up in the final exectuable (so that
__malloc_initialize_hook is there, overrides the weak symbol in
glibc, ....etc.). */
static int bogus = 37;
void *opal_memory_ptmalloc2_hook_pull(void)
{
return &bogus;
}
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
/* OMPI change: This is the symbol to override to make the above
function get fired during malloc initialization time. */
void (*__malloc_initialize_hook) (void) =
opal_memory_ptmalloc2_malloc_init_hook;
/*
* Local variables:
Per http://www.open-mpi.org/community/lists/announce/2009/03/0029.php and https://svn.open-mpi.org/trac/ompi/ticket/1853, mallopt() hints do not always work -- it is possible for memory to be returned to the OS and therefore OMPI's registration cache becomes invalid. This commit removes all use of mallopt() and uses a different way to integrate ptmalloc2 than we have done in the past. In particular, we use almost exactly the same technique as MX: * Remove all uses of mallopt, to include the opal/memory mallopt component. * Name-shift all of OMPI's internal ptmalloc2 public symbols (e.g., malloc -> opal_memory_ptmalloc2_malloc). * At run-time, use the existing glibc allocator malloc hook function pointers to fully hijack the glibc allocator with our own name-shifted ptmalloc2. * Make the decision whether to hijack the glibc allocator ''at run time'' (vs. at link time, as previous ptmalloc2 integration attempts have done). Look at the OMPI_MCA_mpi_leave_pinned and OMPI_MCA_mpi_leave_pinned_pipeline environment variables and the existence of /sys/class/infiniband to determine if we should install the hooks or not. * As an added bonus, we can now tell if libopen-pal is linked statically or dynamically, and if we're linked statically, we assume that munmap intercept support doesn't work. See the opal/mca/memory/ptmalloc2/README-open-mpi.txt file for all the gory details about the implementation. Fixes trac:1853. This commit was SVN r20921. The following Trac tickets were found above: Ticket 1853 --> https://svn.open-mpi.org/trac/ompi/ticket/1853
2009-04-01 17:52:16 +00:00
* c-basic-offset: 4
* End:
*/