1
1
openmpi/ompi/mca/btl/openib/btl_openib_frag.h

350 строки
11 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2006-2007 Voltaire All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#ifndef MCA_BTL_IB_FRAG_H
#define MCA_BTL_IB_FRAG_H
#include "ompi_config.h"
#include <infiniband/verbs.h>
#include "ompi/mca/btl/btl.h"
#if defined(c_plusplus) || defined(__cplusplus)
extern "C" {
#endif
struct mca_btl_openib_reg_t;
struct mca_btl_openib_header_t {
mca_btl_base_tag_t tag;
uint8_t cm_seen;
uint16_t credits;
};
typedef struct mca_btl_openib_header_t mca_btl_openib_header_t;
#define BTL_OPENIB_RDMA_CREDITS_FLAG (1<<15)
#define BTL_OPENIB_IS_RDMA_CREDITS(I) ((I)&BTL_OPENIB_RDMA_CREDITS_FLAG)
#define BTL_OPENIB_CREDITS(I) ((I)&~BTL_OPENIB_RDMA_CREDITS_FLAG)
#define BTL_OPENIB_HEADER_HTON(h) \
do { \
(h).credits = htons((h).credits); \
} while (0)
#define BTL_OPENIB_HEADER_NTOH(h) \
do { \
(h).credits = ntohs((h).credits); \
} while (0)
typedef struct mca_btl_openib_header_coalesced_t {
mca_btl_base_tag_t tag;
uint32_t size;
uint32_t alloc_size;
} mca_btl_openib_header_coalesced_t;
#define BTL_OPENIB_HEADER_COALESCED_NTOH(h) \
do { \
(h).size = ntohl((h).size); \
(h).alloc_size = ntohl((h).alloc_size); \
} while(0)
#define BTL_OPENIB_HEADER_COALESCED_HTON(h) \
do { \
(h).size = htonl((h).size); \
(h).alloc_size = htonl((h).alloc_size); \
} while(0)
struct mca_btl_openib_footer_t {
#if OMPI_ENABLE_DEBUG
uint32_t seq;
#endif
union {
uint32_t size;
uint8_t buf[4];
} u;
};
typedef struct mca_btl_openib_footer_t mca_btl_openib_footer_t;
#ifdef WORDS_BIGENDIAN
#define MCA_BTL_OPENIB_FTR_SIZE_REVERSE(ftr)
#else
#define MCA_BTL_OPENIB_FTR_SIZE_REVERSE(ftr) \
do { \
uint8_t tmp = (ftr).u.buf[0]; \
(ftr).u.buf[0]=(ftr).u.buf[2]; \
(ftr).u.buf[2]=tmp; \
} while (0)
#endif
#if OMPI_ENABLE_DEBUG
#define BTL_OPENIB_FOOTER_SEQ_HTON(h) ((h).seq = htonl((h).seq))
#define BTL_OPENIB_FOOTER_SEQ_NTOH(h) ((h).seq = ntohl((h).seq))
#else
#define BTL_OPENIB_FOOTER_SEQ_HTON(h)
#define BTL_OPENIB_FOOTER_SEQ_NTOH(h)
#endif
#define BTL_OPENIB_FOOTER_HTON(h) \
do { \
BTL_OPENIB_FOOTER_SEQ_HTON(h); \
MCA_BTL_OPENIB_FTR_SIZE_REVERSE(h); \
} while (0)
#define BTL_OPENIB_FOOTER_NTOH(h) \
do { \
BTL_OPENIB_FOOTER_SEQ_NTOH(h); \
MCA_BTL_OPENIB_FTR_SIZE_REVERSE(h); \
} while (0)
#define MCA_BTL_OPENIB_CONTROL_CREDITS 0
#define MCA_BTL_OPENIB_CONTROL_RDMA 1
#define MCA_BTL_OPENIB_CONTROL_COALESCED 2
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 00:46:02 +00:00
#define MCA_BTL_OPENIB_CONTROL_CTS 3
struct mca_btl_openib_control_header_t {
uint8_t type;
};
typedef struct mca_btl_openib_control_header_t mca_btl_openib_control_header_t;
struct mca_btl_openib_eager_rdma_header_t {
mca_btl_openib_control_header_t control;
uint8_t padding[3];
uint32_t rkey;
ompi_ptr_t rdma_start;
};
typedef struct mca_btl_openib_eager_rdma_header_t mca_btl_openib_eager_rdma_header_t;
#define BTL_OPENIB_EAGER_RDMA_CONTROL_HEADER_HTON(h) \
do { \
(h).rkey = htonl((h).rkey); \
(h).rdma_start.lval = hton64((h).rdma_start.lval); \
} while (0)
#define BTL_OPENIB_EAGER_RDMA_CONTROL_HEADER_NTOH(h) \
do { \
(h).rkey = ntohl((h).rkey); \
(h).rdma_start.lval = ntoh64((h).rdma_start.lval); \
} while (0)
struct mca_btl_openib_rdma_credits_header_t {
mca_btl_openib_control_header_t control;
uint8_t qpn;
uint16_t rdma_credits;
};
typedef struct mca_btl_openib_rdma_credits_header_t mca_btl_openib_rdma_credits_header_t;
#define BTL_OPENIB_RDMA_CREDITS_HEADER_HTON(h) \
do { \
(h).rdma_credits = htons((h).rdma_credits); \
} while (0)
#define BTL_OPENIB_RDMA_CREDITS_HEADER_NTOH(h) \
do { \
(h).rdma_credits = ntohs((h).rdma_credits); \
} while (0)
enum mca_btl_openib_frag_type_t {
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
MCA_BTL_OPENIB_FRAG_RECV,
MCA_BTL_OPENIB_FRAG_RECV_USER,
MCA_BTL_OPENIB_FRAG_SEND,
MCA_BTL_OPENIB_FRAG_SEND_USER,
MCA_BTL_OPENIB_FRAG_EAGER_RDMA,
MCA_BTL_OPENIB_FRAG_CONTROL,
MCA_BTL_OPENIB_FRAG_COALESCED
};
typedef enum mca_btl_openib_frag_type_t mca_btl_openib_frag_type_t;
#define openib_frag_type(f) (to_base_frag(f)->type)
/**
* IB fragment derived type.
*/
/* base openib frag */
typedef struct mca_btl_openib_frag_t {
mca_btl_base_descriptor_t base;
mca_btl_base_segment_t segment;
mca_btl_openib_frag_type_t type;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
ompi_free_list_t* list;
} mca_btl_openib_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_frag_t);
#define to_base_frag(f) ((mca_btl_openib_frag_t*)(f))
/* frag used for communication */
typedef struct mca_btl_openib_com_frag_t {
mca_btl_openib_frag_t super;
struct ibv_sge sg_entry;
struct mca_btl_openib_reg_t *registration;
struct mca_btl_base_endpoint_t *endpoint;
} mca_btl_openib_com_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_com_frag_t);
#define to_com_frag(f) ((mca_btl_openib_com_frag_t*)(f))
typedef struct mca_btl_openib_out_frag_t {
mca_btl_openib_com_frag_t super;
struct ibv_send_wr sr_desc;
} mca_btl_openib_out_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_out_frag_t);
#define to_out_frag(f) ((mca_btl_openib_out_frag_t*)(f))
typedef struct mca_btl_openib_com_frag_t mca_btl_openib_in_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_in_frag_t);
#define to_in_frag(f) ((mca_btl_openib_in_frag_t*)(f))
typedef struct mca_btl_openib_send_frag_t {
mca_btl_openib_out_frag_t super;
mca_btl_openib_header_t *hdr, *chdr;
mca_btl_openib_footer_t *ftr;
uint8_t qp_idx;
uint32_t coalesced_length;
opal_list_t coalesced_frags;
} mca_btl_openib_send_frag_t;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
OBJ_CLASS_DECLARATION(mca_btl_openib_send_frag_t);
#define to_send_frag(f) ((mca_btl_openib_send_frag_t*)(f))
typedef struct mca_btl_openib_recv_frag_t {
mca_btl_openib_in_frag_t super;
mca_btl_openib_header_t *hdr;
mca_btl_openib_footer_t *ftr;
struct ibv_recv_wr rd_desc;
uint8_t qp_idx;
} mca_btl_openib_recv_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_recv_frag_t);
#define to_recv_frag(f) ((mca_btl_openib_recv_frag_t*)(f))
typedef struct mca_btl_openib_out_frag_t mca_btl_openib_put_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_put_frag_t);
#define to_put_frag(f) ((mca_btl_openib_put_frag_t*)(f))
typedef struct mca_btl_openib_get_frag_t {
mca_btl_openib_in_frag_t super;
struct ibv_send_wr sr_desc;
} mca_btl_openib_get_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_get_frag_t);
#define to_get_frag(f) ((mca_btl_openib_get_frag_t*)(f))
typedef struct mca_btl_openib_send_frag_t mca_btl_openib_send_control_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_send_control_frag_t);
#define to_send_control_frag(f) ((mca_btl_openib_send_control_frag_t*)(f))
typedef struct mca_btl_openib_coalesced_frag_t {
mca_btl_openib_frag_t super;
mca_btl_openib_send_frag_t *send_frag;
mca_btl_openib_header_coalesced_t *hdr;
} mca_btl_openib_coalesced_frag_t;
OBJ_CLASS_DECLARATION(mca_btl_openib_coalesced_frag_t);
#define to_coalesced_frag(f) ((mca_btl_openib_coalesced_frag_t*)(f))
/*
* Allocate an IB send descriptor
*
*/
static inline mca_btl_openib_send_control_frag_t *
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 00:46:02 +00:00
alloc_control_frag(mca_btl_openib_module_t *btl)
{
int rc;
ompi_free_list_item_t *item;
OMPI_FREE_LIST_WAIT(&btl->device->send_free_control, item, rc);
return to_send_control_frag(item);
}
static inline uint8_t frag_size_to_order(mca_btl_openib_module_t* btl,
size_t size)
{
int qp;
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++)
if(mca_btl_openib_component.qp_infos[qp].size >= size)
return qp;
return MCA_BTL_NO_ORDER;
}
static inline mca_btl_openib_com_frag_t *alloc_send_user_frag(void)
{
int rc;
ompi_free_list_item_t *item;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
OMPI_FREE_LIST_GET(&mca_btl_openib_component.send_user_free, item, rc);
return to_com_frag(item);
}
static inline mca_btl_openib_com_frag_t *alloc_recv_user_frag(void)
{
int rc;
ompi_free_list_item_t *item;
OMPI_FREE_LIST_GET(&mca_btl_openib_component.recv_user_free, item, rc);
return to_com_frag(item);
}
static inline mca_btl_openib_coalesced_frag_t *alloc_coalesced_frag(void)
{
int rc;
ompi_free_list_item_t *item;
OMPI_FREE_LIST_GET(&mca_btl_openib_component.send_free_coalesced, item, rc);
return to_coalesced_frag(item);
}
#define MCA_BTL_IB_FRAG_RETURN(frag) \
do { \
OMPI_FREE_LIST_RETURN(to_base_frag(frag)->list, \
(ompi_free_list_item_t*)(frag)); \
} while(0);
#define MCA_BTL_OPENIB_CLEAN_PENDING_FRAGS(list) \
while(!opal_list_is_empty(list)){ \
opal_list_item_t *frag_item; \
frag_item = opal_list_remove_first(list); \
MCA_BTL_IB_FRAG_RETURN(frag_item); \
} \
struct mca_btl_openib_module_t;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
struct mca_btl_openib_frag_init_data_t {
uint8_t order;
ompi_free_list_t* list;
};
typedef struct mca_btl_openib_frag_init_data_t mca_btl_openib_frag_init_data_t;
void mca_btl_openib_frag_init(ompi_free_list_item_t* item, void* ctx);
#if defined(c_plusplus) || defined(__cplusplus)
}
#endif
#endif