458 строки
12 KiB
C
458 строки
12 KiB
C
|
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
|
||
|
/*
|
||
|
* Copyright (c) 2009-2012 Mellanox Technologies. All rights reserved.
|
||
|
* Copyright (c) 2009-2012 Oak Ridge National Laboratory. All rights reserved.
|
||
|
* Copyright (c) 2014 Los Alamos National Security, LLC. All rights
|
||
|
* reserved.
|
||
|
* $COPYRIGHT$
|
||
|
*
|
||
|
* Additional copyrights may follow
|
||
|
*
|
||
|
* $HEADER$
|
||
|
*/
|
||
|
|
||
|
#include "ompi_config.h"
|
||
|
#ifdef HAVE_UNISTD_H
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
#include <sys/types.h>
|
||
|
#ifdef HAVE_SYS_MMAN_H
|
||
|
#include <sys/mman.h>
|
||
|
#endif
|
||
|
#include <fcntl.h>
|
||
|
#include <errno.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#include "ompi/constants.h"
|
||
|
#include "netpatterns.h"
|
||
|
|
||
|
/*
|
||
|
* Create mmaped shared file
|
||
|
*/
|
||
|
|
||
|
/* setup an n-array tree */
|
||
|
|
||
|
int netpatterns_setup_narray_tree(int tree_order, int my_rank, int num_nodes,
|
||
|
netpatterns_tree_node_t *my_node)
|
||
|
{
|
||
|
/* local variables */
|
||
|
int n_levels, result;
|
||
|
int my_level_in_tree, cnt;
|
||
|
int lvl,cum_cnt, my_rank_in_my_level,n_lvls_in_tree;
|
||
|
int start_index,end_index;
|
||
|
|
||
|
/* sanity check */
|
||
|
if( 1 >= tree_order ) {
|
||
|
goto Error;
|
||
|
}
|
||
|
|
||
|
my_node->my_rank=my_rank;
|
||
|
my_node->tree_size=num_nodes;
|
||
|
|
||
|
/* figure out number of levels in tree */
|
||
|
n_levels=0;
|
||
|
result=num_nodes-1;
|
||
|
while (0 < result ) {
|
||
|
result/=tree_order;
|
||
|
n_levels++;
|
||
|
};
|
||
|
|
||
|
/* figure out who my children and parents are */
|
||
|
my_level_in_tree=-1;
|
||
|
result=my_rank;
|
||
|
/* cnt - number of ranks in given level */
|
||
|
cnt=1;
|
||
|
/* cummulative count of ranks */
|
||
|
while( 0 <= result ) {
|
||
|
result-=cnt;
|
||
|
cnt*=tree_order;
|
||
|
my_level_in_tree++;
|
||
|
};
|
||
|
/* int my_level_in_tree, n_children, n_parents; */
|
||
|
|
||
|
if( 0 == my_rank ) {
|
||
|
my_node->n_parents=0;
|
||
|
my_node->parent_rank=-1;
|
||
|
my_rank_in_my_level=0;
|
||
|
} else {
|
||
|
my_node->n_parents=1;
|
||
|
cnt=1;
|
||
|
cum_cnt=0;
|
||
|
for (lvl = 0 ; lvl < my_level_in_tree ; lvl ++ ) {
|
||
|
/* cummulative count up to this level */
|
||
|
cum_cnt+=cnt;
|
||
|
/* number of ranks in this level */
|
||
|
cnt*=tree_order;
|
||
|
}
|
||
|
my_rank_in_my_level=my_rank-cum_cnt;
|
||
|
/* tree_order consecutive ranks have the same parent */
|
||
|
my_node->parent_rank=cum_cnt-cnt/tree_order+my_rank_in_my_level/tree_order;
|
||
|
}
|
||
|
|
||
|
/* figure out number of levels in the tree */
|
||
|
n_lvls_in_tree=0;
|
||
|
result=num_nodes;
|
||
|
/* cnt - number of ranks in given level */
|
||
|
cnt=1;
|
||
|
/* cummulative count of ranks */
|
||
|
while( 0 < result ) {
|
||
|
result-=cnt;
|
||
|
cnt*=tree_order;
|
||
|
n_lvls_in_tree++;
|
||
|
};
|
||
|
|
||
|
my_node->children_ranks=(int *)NULL;
|
||
|
|
||
|
/* get list of children */
|
||
|
if( my_level_in_tree == (n_lvls_in_tree -1 ) ) {
|
||
|
/* last level has no children */
|
||
|
my_node->n_children=0;
|
||
|
} else {
|
||
|
cum_cnt=0;
|
||
|
cnt=1;
|
||
|
for( lvl=0 ; lvl <= my_level_in_tree ; lvl++ ) {
|
||
|
cum_cnt+=cnt;
|
||
|
cnt*=tree_order;
|
||
|
}
|
||
|
start_index=cum_cnt+my_rank_in_my_level*tree_order;
|
||
|
end_index=start_index+tree_order-1;
|
||
|
|
||
|
/* don't go out of bounds at the end of the list */
|
||
|
if( end_index >= num_nodes ) {
|
||
|
end_index = num_nodes-1;
|
||
|
}
|
||
|
|
||
|
if( start_index <= (num_nodes-1) ) {
|
||
|
my_node->n_children=end_index-start_index+1;
|
||
|
} else {
|
||
|
my_node->n_children=0;
|
||
|
}
|
||
|
|
||
|
my_node->children_ranks=NULL;
|
||
|
if( 0 < my_node->n_children ) {
|
||
|
my_node->children_ranks=
|
||
|
(int *)malloc( sizeof(int)*my_node->n_children);
|
||
|
if( NULL == my_node->children_ranks) {
|
||
|
goto Error;
|
||
|
}
|
||
|
for (lvl= start_index ; lvl <= end_index ; lvl++ ) {
|
||
|
my_node->children_ranks[lvl-start_index]=lvl;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* set node type */
|
||
|
if( 0 == my_node->n_parents ) {
|
||
|
my_node->my_node_type=ROOT_NODE;
|
||
|
} else if ( 0 == my_node->n_children ) {
|
||
|
my_node->my_node_type=LEAF_NODE;
|
||
|
} else {
|
||
|
my_node->my_node_type=INTERIOR_NODE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* successful return */
|
||
|
return OMPI_SUCCESS;
|
||
|
|
||
|
Error:
|
||
|
|
||
|
/* error return */
|
||
|
return OMPI_ERROR;
|
||
|
}
|
||
|
|
||
|
void netpatterns_cleanup_narray_knomial_tree (netpatterns_narray_knomial_tree_node_t *my_node)
|
||
|
{
|
||
|
if (my_node->children_ranks) {
|
||
|
free (my_node->children_ranks);
|
||
|
my_node->children_ranks = NULL;
|
||
|
}
|
||
|
|
||
|
if (0 != my_node->my_rank) {
|
||
|
netpatterns_cleanup_recursive_knomial_tree_node (&my_node->k_node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int netpatterns_setup_narray_knomial_tree(
|
||
|
int tree_order, int my_rank, int num_nodes,
|
||
|
netpatterns_narray_knomial_tree_node_t *my_node)
|
||
|
{
|
||
|
/* local variables */
|
||
|
int n_levels, result;
|
||
|
int my_level_in_tree, cnt ;
|
||
|
int lvl,cum_cnt, my_rank_in_my_level,n_lvls_in_tree;
|
||
|
int start_index,end_index;
|
||
|
int rc;
|
||
|
|
||
|
/* sanity check */
|
||
|
if( 1 >= tree_order ) {
|
||
|
goto Error;
|
||
|
}
|
||
|
|
||
|
my_node->my_rank=my_rank;
|
||
|
my_node->tree_size=num_nodes;
|
||
|
|
||
|
/* figure out number of levels in tree */
|
||
|
n_levels=0;
|
||
|
result=num_nodes-1;
|
||
|
while (0 < result ) {
|
||
|
result/=tree_order;
|
||
|
n_levels++;
|
||
|
};
|
||
|
|
||
|
/* figure out who my children and parents are */
|
||
|
my_level_in_tree=-1;
|
||
|
result=my_rank;
|
||
|
/* cnt - number of ranks in given level */
|
||
|
cnt=1;
|
||
|
/* cummulative count of ranks */
|
||
|
while( 0 <= result ) {
|
||
|
result-=cnt;
|
||
|
cnt*=tree_order;
|
||
|
my_level_in_tree++;
|
||
|
};
|
||
|
/* int my_level_in_tree, n_children, n_parents; */
|
||
|
|
||
|
if( 0 == my_rank ) {
|
||
|
my_node->n_parents=0;
|
||
|
my_node->parent_rank=-1;
|
||
|
my_rank_in_my_level=0;
|
||
|
} else {
|
||
|
my_node->n_parents=1;
|
||
|
cnt=1;
|
||
|
cum_cnt=0;
|
||
|
for (lvl = 0 ; lvl < my_level_in_tree ; lvl ++ ) {
|
||
|
/* cummulative count up to this level */
|
||
|
cum_cnt+=cnt;
|
||
|
/* number of ranks in this level */
|
||
|
cnt*=tree_order;
|
||
|
}
|
||
|
|
||
|
my_node->rank_on_level =
|
||
|
my_rank_in_my_level =
|
||
|
my_rank-cum_cnt;
|
||
|
my_node->level_size = cnt;
|
||
|
|
||
|
rc = netpatterns_setup_recursive_knomial_tree_node(
|
||
|
my_node->level_size, my_node->rank_on_level,
|
||
|
tree_order, &my_node->k_node);
|
||
|
if (OMPI_SUCCESS != rc) {
|
||
|
goto Error;
|
||
|
}
|
||
|
|
||
|
/* tree_order consecutive ranks have the same parent */
|
||
|
my_node->parent_rank=cum_cnt-cnt/tree_order+my_rank_in_my_level/tree_order;
|
||
|
}
|
||
|
|
||
|
/* figure out number of levels in the tree */
|
||
|
n_lvls_in_tree=0;
|
||
|
result=num_nodes;
|
||
|
/* cnt - number of ranks in given level */
|
||
|
cnt=1;
|
||
|
/* cummulative count of ranks */
|
||
|
while( 0 < result ) {
|
||
|
result-=cnt;
|
||
|
cnt*=tree_order;
|
||
|
n_lvls_in_tree++;
|
||
|
};
|
||
|
|
||
|
if(result < 0) {
|
||
|
/* reset the size on group */
|
||
|
num_nodes = cnt / tree_order;
|
||
|
}
|
||
|
|
||
|
my_node->children_ranks=(int *)NULL;
|
||
|
|
||
|
/* get list of children */
|
||
|
if( my_level_in_tree == (n_lvls_in_tree -1 ) ) {
|
||
|
/* last level has no children */
|
||
|
my_node->n_children=0;
|
||
|
} else {
|
||
|
cum_cnt=0;
|
||
|
cnt=1;
|
||
|
for( lvl=0 ; lvl <= my_level_in_tree ; lvl++ ) {
|
||
|
cum_cnt+=cnt;
|
||
|
cnt*=tree_order;
|
||
|
}
|
||
|
start_index=cum_cnt+my_rank_in_my_level*tree_order;
|
||
|
end_index=start_index+tree_order-1;
|
||
|
|
||
|
/* don't go out of bounds at the end of the list */
|
||
|
if( end_index >= num_nodes ) {
|
||
|
end_index = num_nodes-1;
|
||
|
}
|
||
|
|
||
|
if( start_index <= (num_nodes-1) ) {
|
||
|
my_node->n_children=end_index-start_index+1;
|
||
|
} else {
|
||
|
my_node->n_children=0;
|
||
|
}
|
||
|
|
||
|
my_node->children_ranks=NULL;
|
||
|
if( 0 < my_node->n_children ) {
|
||
|
my_node->children_ranks=
|
||
|
(int *)malloc( sizeof(int)*my_node->n_children);
|
||
|
if( NULL == my_node->children_ranks) {
|
||
|
goto Error;
|
||
|
}
|
||
|
for (lvl= start_index ; lvl <= end_index ; lvl++ ) {
|
||
|
my_node->children_ranks[lvl-start_index]=lvl;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* set node type */
|
||
|
if( 0 == my_node->n_parents ) {
|
||
|
my_node->my_node_type=ROOT_NODE;
|
||
|
} else if ( 0 == my_node->n_children ) {
|
||
|
my_node->my_node_type=LEAF_NODE;
|
||
|
} else {
|
||
|
my_node->my_node_type=INTERIOR_NODE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* successful return */
|
||
|
return OMPI_SUCCESS;
|
||
|
|
||
|
Error:
|
||
|
|
||
|
/* error return */
|
||
|
return OMPI_ERROR;
|
||
|
}
|
||
|
|
||
|
/* calculate the nearest power of radix that is equal to or greater
|
||
|
* than size, with the specified radix. The resulting tree is of
|
||
|
* depth n_lvls.
|
||
|
*/
|
||
|
int ompi_roundup_to_power_radix ( int radix, int size, int *n_lvls )
|
||
|
{
|
||
|
int n_levels=0, return_value=1;
|
||
|
int result;
|
||
|
if( 1 > size ) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
result=size-1;
|
||
|
while (0 < result ) {
|
||
|
result/=radix;
|
||
|
n_levels++;
|
||
|
return_value*=radix;
|
||
|
};
|
||
|
*n_lvls=n_levels;
|
||
|
return return_value;
|
||
|
}
|
||
|
|
||
|
static int fill_in_node_data(int tree_order, int num_nodes, int my_node,
|
||
|
netpatterns_tree_node_t *nodes_data)
|
||
|
{
|
||
|
/* local variables */
|
||
|
int rc, num_ranks_per_child, num_children, n_extra;
|
||
|
int child, rank, n_to_offset, n_ranks_to_child;
|
||
|
|
||
|
/* figure out who are my children */
|
||
|
num_ranks_per_child=num_nodes/tree_order;
|
||
|
if( num_ranks_per_child ) {
|
||
|
num_children=tree_order;
|
||
|
n_extra=num_nodes-num_ranks_per_child*tree_order;
|
||
|
} else {
|
||
|
num_children=num_nodes;
|
||
|
/* each child has the same number of descendents - 1 */
|
||
|
n_extra=0;
|
||
|
/* when there is a child, there is at least one
|
||
|
* descendent */
|
||
|
num_ranks_per_child=1;
|
||
|
}
|
||
|
|
||
|
nodes_data[my_node].n_children=num_children;
|
||
|
if( num_children ) {
|
||
|
nodes_data[my_node].children_ranks=(int *)
|
||
|
malloc(sizeof(int)*num_children);
|
||
|
if(!nodes_data[my_node].children_ranks) {
|
||
|
|
||
|
if ( NULL == nodes_data[my_node].children_ranks )
|
||
|
{
|
||
|
fprintf(stderr, "Cannot allocate memory for children_ranks.\n");
|
||
|
rc = OMPI_ERR_OUT_OF_RESOURCE;
|
||
|
goto error;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rank = my_node;
|
||
|
for( child=0 ; child < num_children ; child ++ ) {
|
||
|
|
||
|
/* set parent information */
|
||
|
nodes_data[rank].n_parents=1;
|
||
|
nodes_data[rank].parent_rank=my_node;
|
||
|
if( n_extra ) {
|
||
|
n_to_offset=child;
|
||
|
if( n_to_offset > n_extra){
|
||
|
n_to_offset=n_extra;
|
||
|
}
|
||
|
} else {
|
||
|
n_to_offset=0;
|
||
|
}
|
||
|
|
||
|
rank=my_node+1+child*num_ranks_per_child;
|
||
|
rank+=n_to_offset;
|
||
|
|
||
|
/* set parent information */
|
||
|
nodes_data[rank].n_parents=1;
|
||
|
nodes_data[rank].parent_rank=my_node;
|
||
|
|
||
|
n_ranks_to_child=num_ranks_per_child;
|
||
|
if(n_extra && (child < n_extra) ) {
|
||
|
n_ranks_to_child++;
|
||
|
}
|
||
|
|
||
|
/* set child information */
|
||
|
nodes_data[my_node].children_ranks[child]=rank;
|
||
|
|
||
|
/* remove the child from the list of ranks */
|
||
|
n_ranks_to_child--;
|
||
|
rc=fill_in_node_data(tree_order, n_ranks_to_child, rank, nodes_data);
|
||
|
if( OMPI_SUCCESS != rc ) {
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/* return */
|
||
|
return OMPI_SUCCESS;
|
||
|
|
||
|
/* Error */
|
||
|
error:
|
||
|
return rc;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine sets up the array describing the communication tree for
|
||
|
* a k-ary tree where the children form a contiguous range of ranks at
|
||
|
* each level. The assumption here is that rank 0 is always the root -
|
||
|
* ranks may be rotated based on who the actual root is, to obtain the
|
||
|
* appropriate communication pattern for such roots.
|
||
|
*/
|
||
|
OMPI_DECLSPEC int netpatterns_setup_narray_tree_contigous_ranks(
|
||
|
int tree_order, int num_nodes,
|
||
|
netpatterns_tree_node_t **tree_nodes)
|
||
|
{
|
||
|
/* local variables */
|
||
|
int num_descendent_ranks=num_nodes-1;
|
||
|
int rc=OMPI_SUCCESS;
|
||
|
|
||
|
*tree_nodes=(netpatterns_tree_node_t *)malloc(
|
||
|
sizeof(netpatterns_tree_node_t)*
|
||
|
num_nodes);
|
||
|
if(!(*tree_nodes) ) {
|
||
|
fprintf(stderr, "Cannot allocate memory for tree_nodes.\n");
|
||
|
rc = OMPI_ERR_OUT_OF_RESOURCE;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
(*tree_nodes)[0].n_parents=0;
|
||
|
rc=fill_in_node_data(tree_order,
|
||
|
num_descendent_ranks, 0, *tree_nodes);
|
||
|
|
||
|
/* successful return */
|
||
|
return rc;
|
||
|
|
||
|
}
|