2004-08-21 04:49:07 +04:00
|
|
|
/*
|
2005-11-05 22:57:48 +03:00
|
|
|
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
|
|
|
|
* University Research and Technology
|
|
|
|
* Corporation. All rights reserved.
|
|
|
|
* Copyright (c) 2004-2005 The University of Tennessee and The University
|
|
|
|
* of Tennessee Research Foundation. All rights
|
|
|
|
* reserved.
|
2004-11-28 23:09:25 +03:00
|
|
|
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
|
|
|
|
* University of Stuttgart. All rights reserved.
|
2005-03-24 15:43:37 +03:00
|
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
|
|
* All rights reserved.
|
2004-11-22 04:38:40 +03:00
|
|
|
* $COPYRIGHT$
|
|
|
|
*
|
|
|
|
* Additional copyrights may follow
|
|
|
|
*
|
2004-08-21 04:49:07 +04:00
|
|
|
* $HEADER$
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "ompi_config.h"
|
|
|
|
|
2006-02-12 04:33:29 +03:00
|
|
|
#include "ompi/constants.h"
|
2005-09-15 06:18:16 +04:00
|
|
|
#include "ompi/communicator/communicator.h"
|
|
|
|
#include "ompi/datatype/convertor.h"
|
|
|
|
#include "ompi/mca/coll/coll.h"
|
2006-02-12 04:33:29 +03:00
|
|
|
#include "opal/sys/atomic.h"
|
2005-09-15 06:18:16 +04:00
|
|
|
#include "ompi/op/op.h"
|
2004-08-21 04:49:07 +04:00
|
|
|
#include "coll_sm.h"
|
|
|
|
|
|
|
|
|
2005-09-15 06:18:16 +04:00
|
|
|
/*
|
|
|
|
* Local functions
|
|
|
|
*/
|
|
|
|
static int reduce_inorder(void *sbuf, void* rbuf, int count,
|
|
|
|
struct ompi_datatype_t *dtype,
|
|
|
|
struct ompi_op_t *op,
|
|
|
|
int root, struct ompi_communicator_t *comm);
|
|
|
|
#define WANT_REDUCE_NO_ORDER 0
|
|
|
|
#if WANT_REDUCE_NO_ORDER
|
|
|
|
static int reduce_no_order(void *sbuf, void* rbuf, int count,
|
|
|
|
struct ompi_datatype_t *dtype,
|
|
|
|
struct ompi_op_t *op,
|
|
|
|
int root, struct ompi_communicator_t *comm);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Useful utility routine
|
|
|
|
*/
|
2005-12-11 01:02:14 +03:00
|
|
|
#if !defined(__WINDOWS__)
|
2005-09-15 06:18:16 +04:00
|
|
|
static inline int min(int a, int b)
|
|
|
|
{
|
|
|
|
return (a < b) ? a : b;
|
|
|
|
}
|
2005-12-11 01:02:14 +03:00
|
|
|
#endif /* !defined(__WINDOWS__) */
|
2005-09-15 06:18:16 +04:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Shared memory reduction.
|
2004-08-21 04:49:07 +04:00
|
|
|
*
|
2005-09-15 06:18:16 +04:00
|
|
|
* Simply farms out to the associative or non-associative functions.
|
2004-08-21 04:49:07 +04:00
|
|
|
*/
|
2005-01-30 04:42:57 +03:00
|
|
|
int mca_coll_sm_reduce_intra(void *sbuf, void* rbuf, int count,
|
|
|
|
struct ompi_datatype_t *dtype,
|
|
|
|
struct ompi_op_t *op,
|
|
|
|
int root, struct ompi_communicator_t *comm)
|
2004-08-21 04:49:07 +04:00
|
|
|
{
|
2005-09-15 06:18:16 +04:00
|
|
|
int32_t size;
|
|
|
|
|
|
|
|
/* There are several possibilities:
|
|
|
|
*
|
|
|
|
|
|
|
|
* 0. If the datatype is larger than a segment, fall back to basic
|
|
|
|
* 1. If the op is user-defined, use the strict order
|
|
|
|
* 2. If the op is intrinsic:
|
|
|
|
* a. If the op is float-associative, use the unordered
|
|
|
|
* b. If the op is not float-asociative:
|
|
|
|
* i. if the data is floating point, use the strict order
|
|
|
|
* ii. if the data is not floating point, use the unordered
|
|
|
|
*/
|
|
|
|
|
|
|
|
ompi_ddt_type_size(dtype, &size);
|
|
|
|
if (size > mca_coll_sm_component.sm_control_size) {
|
|
|
|
return comm->c_coll_basic_module->coll_reduce(sbuf, rbuf, count,
|
|
|
|
dtype, op, root, comm);
|
|
|
|
}
|
|
|
|
#if WANT_REDUCE_NO_ORDER
|
|
|
|
else if (!ompi_op_is_intrinsic(op) ||
|
|
|
|
(ompi_op_is_intrinsic(op) && !ompi_op_is_float_assoc(op) &&
|
|
|
|
0 != (dtype->flags & DT_FLAG_DATA_FLOAT))) {
|
|
|
|
return reduce_inorder(sbuf, rbuf, count, dtype, op, root, comm);
|
|
|
|
} else {
|
|
|
|
return reduce_no_order(sbuf, rbuf, count, dtype, op, root, comm);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
else {
|
|
|
|
return reduce_inorder(sbuf, rbuf, count, dtype, op, root, comm);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* In-order shared memory reduction.
|
|
|
|
*
|
|
|
|
* This function performs the reduction in order -- combining elements
|
|
|
|
* starting with (0 operation 1), then (result operation 2), then
|
|
|
|
* (result operation 3), etc.
|
|
|
|
*
|
|
|
|
* Root's algorithm:
|
|
|
|
*
|
|
|
|
* If our datatype is "friendly" (i.e., the representation of the
|
|
|
|
* buffer is the same packed as it is unpacked), then the root doesn't
|
|
|
|
* need a temporary buffer -- we can combine the operands directly
|
|
|
|
* from the shared memory segments to the root's rbuf. Otherwise, we
|
|
|
|
* need a receive convertor and receive each fragment into a temporary
|
|
|
|
* buffer where we can combine that operan with the root's rbuf.
|
|
|
|
*
|
|
|
|
* In general, there are two loops:
|
|
|
|
*
|
|
|
|
* 1. loop over all fragments (which must be done in units of an
|
|
|
|
* integer number of datatypes -- remember that if this function is
|
|
|
|
* called, we know that the datattype is smaller than the max size of
|
|
|
|
* a fragment, so this is definitely possible)
|
|
|
|
*
|
|
|
|
* 2. loop over all the processes -- 0 to (comm_size-1).
|
|
|
|
* For process 0:
|
|
|
|
* - if the root==0, copy the *entire* buffer (i.e., don't copy
|
|
|
|
* fragment by fragment -- might as well copy the entire thing) the
|
|
|
|
* first time through the algorithm, and no-op every other time
|
|
|
|
* - else, copy from the shmem fragment to the out buffer
|
|
|
|
* For all other proceses:
|
|
|
|
* - if root==i, combine the relevant fragment from the sbuf to the
|
|
|
|
* relevant fragment on the rbuf
|
|
|
|
* - else, if the datatype is friendly, combine relevant fragment from
|
|
|
|
* the shmem segment to the relevant fragment in the rbuf. Otherwise,
|
|
|
|
* use the convertor to copy the fragment out of shmem into a temp
|
|
|
|
* buffer and do the combination from there to the rbuf.
|
|
|
|
*
|
|
|
|
* If we don't have a friendly datatype, then free the temporary
|
|
|
|
* buffer at the end.
|
|
|
|
*/
|
|
|
|
static int reduce_inorder(void *sbuf, void* rbuf, int count,
|
|
|
|
struct ompi_datatype_t *dtype,
|
|
|
|
struct ompi_op_t *op,
|
|
|
|
int root, struct ompi_communicator_t *comm)
|
|
|
|
{
|
|
|
|
struct iovec iov;
|
|
|
|
mca_coll_base_comm_t *data = comm->c_coll_selected_data;
|
|
|
|
int ret, rank, size;
|
|
|
|
int flag_num, segment_num, max_segment_num;
|
|
|
|
size_t total_size, max_data, bytes;
|
|
|
|
mca_coll_sm_in_use_flag_t *flag;
|
|
|
|
ompi_convertor_t convertor;
|
|
|
|
mca_coll_base_mpool_index_t *index;
|
|
|
|
int32_t ddt_size;
|
|
|
|
size_t segment_ddt_count, segment_ddt_bytes, zero = 0;
|
|
|
|
|
|
|
|
/* Setup some identities */
|
|
|
|
|
|
|
|
rank = ompi_comm_rank(comm);
|
|
|
|
size = ompi_comm_size(comm);
|
|
|
|
|
|
|
|
/* Figure out how much we should have the convertor copy. We need
|
|
|
|
to have it be in units of a datatype -- i.e., we only want to
|
|
|
|
copy a whole datatype worth of data or none at all (we've
|
|
|
|
already guaranteed above that the datatype is not larger than a
|
|
|
|
segment, so we'll at least get 1). */
|
|
|
|
|
|
|
|
ompi_ddt_type_size(dtype, &ddt_size);
|
|
|
|
segment_ddt_count = mca_coll_sm_component.sm_fragment_size / ddt_size;
|
|
|
|
iov.iov_len = segment_ddt_bytes = segment_ddt_count * ddt_size;
|
|
|
|
total_size = ddt_size * count;
|
|
|
|
|
|
|
|
bytes = 0;
|
|
|
|
|
|
|
|
/* Only have one top-level decision as to whether I'm the root or
|
|
|
|
not. Do this at the slight expense of repeating a little logic
|
|
|
|
-- but it's better than a conditional branch in every loop
|
|
|
|
iteration. */
|
|
|
|
|
|
|
|
/*********************************************************************
|
|
|
|
* Root
|
|
|
|
*********************************************************************/
|
|
|
|
|
|
|
|
if (root == rank) {
|
|
|
|
char *reduce_temp_buffer, *free_buffer, *reduce_target;
|
|
|
|
long true_lb, true_extent, lb, extent;
|
|
|
|
char *inplace_temp;
|
|
|
|
int peer;
|
|
|
|
int count_left = count;
|
|
|
|
int frag_num = 0;
|
|
|
|
bool first_operation = true;
|
|
|
|
|
|
|
|
/* If the datatype is the same packed as it is unpacked, we
|
|
|
|
can save a memory copy and just do the reduction operation
|
|
|
|
directly from the shared memory segment. However, if the
|
|
|
|
representation is not the same, then we need to get a
|
|
|
|
receive convertor and a temporary buffer to receive
|
|
|
|
into. */
|
|
|
|
|
|
|
|
ompi_ddt_get_extent(dtype, &lb, &extent);
|
|
|
|
ompi_ddt_get_true_extent(dtype, &true_lb, &true_extent);
|
|
|
|
if (ompi_ddt_is_contiguous_memory_layout(dtype, count)) {
|
2005-10-04 01:34:58 +04:00
|
|
|
reduce_temp_buffer = free_buffer = NULL;
|
2005-09-15 06:18:16 +04:00
|
|
|
} else {
|
|
|
|
OBJ_CONSTRUCT(&convertor, ompi_convertor_t);
|
|
|
|
|
|
|
|
/* See lengthy comment in coll basic reduce about
|
|
|
|
explanation for how to malloc the extra buffer. Note
|
|
|
|
that we do not need a buffer big enough to hold "count"
|
|
|
|
instances of the datatype (i.e., big enough to hold the
|
|
|
|
entire user buffer) -- we only need to be able to hold
|
|
|
|
"segment_ddt_count" instances (i.e., the number of
|
|
|
|
instances that can be held in a single fragment) */
|
|
|
|
|
|
|
|
free_buffer = malloc(true_extent +
|
|
|
|
(segment_ddt_count - 1) * extent);
|
|
|
|
if (NULL == free_buffer) {
|
|
|
|
return OMPI_ERR_OUT_OF_RESOURCE;
|
|
|
|
}
|
|
|
|
reduce_temp_buffer = free_buffer - lb;
|
|
|
|
|
|
|
|
/* Trickery here: we use a potentially smaller count than
|
|
|
|
the user count -- use the largest count that is <=
|
|
|
|
user's count that will fit within a single segment. */
|
|
|
|
|
|
|
|
if (OMPI_SUCCESS !=
|
|
|
|
(ret = ompi_convertor_copy_and_prepare_for_recv(ompi_mpi_local_convertor,
|
|
|
|
dtype,
|
|
|
|
segment_ddt_count,
|
|
|
|
reduce_temp_buffer,
|
2006-03-17 21:46:48 +03:00
|
|
|
0,
|
2005-09-15 06:18:16 +04:00
|
|
|
&convertor))) {
|
|
|
|
free(free_buffer);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we're a) doing MPI_IN_PLACE (which means we're the root
|
|
|
|
-- wouldn't have gotten down here with MPI_IN_PLACE if we
|
|
|
|
weren't the root), and b) we're not rank 0, then we need to
|
|
|
|
copy the rbuf into a temporary buffer and use that as the
|
|
|
|
sbuf */
|
|
|
|
|
|
|
|
if (MPI_IN_PLACE == sbuf && 0 != rank) {
|
|
|
|
inplace_temp = malloc(true_extent + (count - 1) * extent);
|
|
|
|
if (NULL == inplace_temp) {
|
|
|
|
if (NULL != free_buffer) {
|
|
|
|
free(free_buffer);
|
|
|
|
}
|
|
|
|
return OMPI_ERR_OUT_OF_RESOURCE;
|
|
|
|
}
|
|
|
|
sbuf = inplace_temp - lb;
|
|
|
|
} else {
|
|
|
|
inplace_temp = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Main loop over receiving / reducing fragments */
|
|
|
|
|
|
|
|
do {
|
2005-10-04 01:34:58 +04:00
|
|
|
flag_num = (data->mcb_operation_count %
|
2005-09-15 06:18:16 +04:00
|
|
|
mca_coll_sm_component.sm_comm_num_in_use_flags);
|
|
|
|
FLAG_SETUP(flag_num, flag, data);
|
|
|
|
FLAG_WAIT_FOR_IDLE(flag);
|
2005-10-04 01:34:58 +04:00
|
|
|
FLAG_RETAIN(flag, size, data->mcb_operation_count);
|
|
|
|
++data->mcb_operation_count;
|
2005-09-15 06:18:16 +04:00
|
|
|
|
|
|
|
/* Loop over all the segments in this set */
|
|
|
|
|
2005-10-01 03:12:23 +04:00
|
|
|
segment_num =
|
|
|
|
flag_num * mca_coll_sm_component.sm_segs_per_inuse_flag;
|
|
|
|
max_segment_num =
|
|
|
|
(flag_num + 1) * mca_coll_sm_component.sm_segs_per_inuse_flag;
|
2005-09-15 06:18:16 +04:00
|
|
|
reduce_target = (((char*) rbuf) + (frag_num * segment_ddt_bytes));
|
|
|
|
do {
|
|
|
|
|
2005-10-04 01:34:58 +04:00
|
|
|
/* Process 0 (special case) */
|
|
|
|
|
|
|
|
if (rank == 0) {
|
|
|
|
/* If we're the root *and* the first process to be
|
|
|
|
combined *and* this is the first segment in the
|
|
|
|
entire algorithm, then just copy the whole
|
|
|
|
buffer. That way, we never need to copy from
|
|
|
|
this process again (i.e., do the copy all at
|
|
|
|
once since all the data is local, and then
|
|
|
|
don't worry about it for the rest of the
|
|
|
|
algorithm) */
|
|
|
|
if (first_operation) {
|
|
|
|
first_operation = false;
|
|
|
|
if (MPI_IN_PLACE != sbuf) {
|
|
|
|
ompi_ddt_copy_content_same_ddt(dtype,
|
|
|
|
count,
|
|
|
|
reduce_target, sbuf);
|
|
|
|
D(("root copied entire buffer to rbuf (contig ddt, count %d) FIRST OPERATION\n", count));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
index = &(data->mcb_mpool_index[segment_num]);
|
|
|
|
PARENT_WAIT_FOR_NOTIFY_SPECIFIC(0, rank, index, max_data);
|
|
|
|
|
|
|
|
/* If we don't need an extra buffer, memcpy the
|
|
|
|
fragment straight to the output buffer.
|
|
|
|
Otherwise, unpack. */
|
|
|
|
|
|
|
|
if (NULL == free_buffer) {
|
|
|
|
D(("root: special case -- copy from rank 0 shemem to reduce_target (%d bytes)\n", max_data));
|
|
|
|
memcpy(reduce_target, index->mcbmi_data, max_data);
|
|
|
|
} else {
|
|
|
|
/* This is somethat inefficient -- should be
|
|
|
|
able to avoid one of the memory copies
|
|
|
|
here, but doing so would violate an
|
|
|
|
abstraction barrier in the convertor (i.e.,
|
|
|
|
directly manipulate some of the private
|
|
|
|
data on the convertor struct) */
|
|
|
|
D(("root: special case -- unpack and copy from rank 0 to reduce_target\n"));
|
|
|
|
COPY_FRAGMENT_OUT(convertor, 0, index,
|
|
|
|
iov, max_data);
|
|
|
|
ompi_convertor_set_position(&convertor, &zero);
|
|
|
|
|
|
|
|
ompi_ddt_copy_content_same_ddt(dtype,
|
|
|
|
max_data / ddt_size,
|
|
|
|
reduce_target,
|
|
|
|
iov.iov_base);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Loop over all the remaining processes, receiving
|
|
|
|
and reducing them in order */
|
2005-09-15 06:18:16 +04:00
|
|
|
|
2005-10-04 01:34:58 +04:00
|
|
|
for (peer = 1; peer < size; ++peer) {
|
2005-09-15 06:18:16 +04:00
|
|
|
|
|
|
|
/* Handle the case where the source is this process */
|
|
|
|
|
|
|
|
if (rank == peer) {
|
2005-10-04 01:34:58 +04:00
|
|
|
/* Otherwise, I'm not the first process, so
|
|
|
|
instead of copying, combine in the next
|
|
|
|
fragment */
|
|
|
|
D(("root combiningn fragment from shmem (contig ddt): count %d (left %d, seg %d)\n", min(count_left, segment_ddt_count), count_left, segment_ddt_count));
|
|
|
|
ompi_op_reduce(op,
|
|
|
|
((char *) sbuf) +
|
|
|
|
frag_num * segment_ddt_bytes,
|
|
|
|
reduce_target,
|
|
|
|
min(count_left, segment_ddt_count),
|
|
|
|
dtype);
|
2005-09-15 06:18:16 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Now handle the case where the source is not
|
|
|
|
this process. Wait for the process to copy to
|
|
|
|
the segment. */
|
|
|
|
|
|
|
|
else {
|
|
|
|
index = &(data->mcb_mpool_index[segment_num]);
|
|
|
|
PARENT_WAIT_FOR_NOTIFY_SPECIFIC(peer, rank,
|
|
|
|
index, max_data);
|
|
|
|
|
|
|
|
/* If we don't need an extra buffer, then do the
|
|
|
|
reduction operation on the fragment straight
|
|
|
|
from the shmem. */
|
|
|
|
|
|
|
|
if (NULL == free_buffer) {
|
2005-10-04 01:34:58 +04:00
|
|
|
D(("root combining %d elements in shmem from peer %d\n",
|
|
|
|
max_data / ddt_size, peer));
|
|
|
|
ompi_op_reduce(op,
|
|
|
|
(index->mcbmi_data +
|
|
|
|
(peer * mca_coll_sm_component.sm_fragment_size)),
|
|
|
|
reduce_target, max_data / ddt_size,
|
|
|
|
dtype);
|
2005-09-15 06:18:16 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Otherwise, unpack the fragment to the temporary
|
|
|
|
buffer and then do the reduction from there */
|
|
|
|
|
|
|
|
else {
|
2005-10-04 01:34:58 +04:00
|
|
|
D(("root combining %d elements in copy out buffer from peer %d\n",
|
|
|
|
max_data / ddt_size, peer));
|
|
|
|
/* Unpack the fragment into my temporary
|
|
|
|
buffer */
|
|
|
|
COPY_FRAGMENT_OUT(convertor, peer, index,
|
|
|
|
iov, max_data);
|
|
|
|
ompi_convertor_set_position(&convertor, &zero);
|
|
|
|
|
|
|
|
/* Do the reduction on this fragment */
|
|
|
|
ompi_op_reduce(op, reduce_temp_buffer,
|
|
|
|
reduce_target,
|
|
|
|
max_data / ddt_size,
|
|
|
|
dtype);
|
2005-09-15 06:18:16 +04:00
|
|
|
}
|
|
|
|
} /* whether this process was me or not */
|
|
|
|
} /* loop over all proceses */
|
|
|
|
|
|
|
|
/* We've iterated through all the processes -- now we
|
|
|
|
move on to the next segment */
|
|
|
|
|
|
|
|
count_left -= segment_ddt_count;
|
|
|
|
bytes += segment_ddt_bytes;
|
|
|
|
++segment_num;
|
|
|
|
++frag_num;
|
|
|
|
reduce_target += segment_ddt_bytes;
|
|
|
|
} while (bytes < total_size && segment_num < max_segment_num);
|
|
|
|
|
|
|
|
/* Root is now done with this set of segments */
|
|
|
|
FLAG_RELEASE(flag);
|
|
|
|
} while (bytes < total_size);
|
|
|
|
|
|
|
|
/* Kill the convertor, if we had one */
|
|
|
|
|
|
|
|
if (NULL != free_buffer) {
|
|
|
|
OBJ_DESTRUCT(&convertor);
|
|
|
|
free(free_buffer);
|
|
|
|
}
|
|
|
|
if (NULL != inplace_temp) {
|
|
|
|
free(inplace_temp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*********************************************************************
|
|
|
|
* Non-root
|
|
|
|
*********************************************************************/
|
|
|
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
/* Here we get a convertor for the full count that the user
|
|
|
|
provided (as opposed to the convertor that the root got) */
|
|
|
|
|
|
|
|
OBJ_CONSTRUCT(&convertor, ompi_convertor_t);
|
|
|
|
if (OMPI_SUCCESS !=
|
|
|
|
(ret =
|
|
|
|
ompi_convertor_copy_and_prepare_for_send(ompi_mpi_local_convertor,
|
|
|
|
dtype,
|
|
|
|
count,
|
|
|
|
sbuf,
|
2006-03-17 21:46:48 +03:00
|
|
|
0,
|
2005-09-15 06:18:16 +04:00
|
|
|
&convertor))) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Loop over sending fragments to the root */
|
|
|
|
|
|
|
|
do {
|
|
|
|
flag_num = (data->mcb_operation_count %
|
|
|
|
mca_coll_sm_component.sm_comm_num_in_use_flags);
|
|
|
|
|
|
|
|
/* Wait for the root to mark this set of segments as
|
|
|
|
ours */
|
|
|
|
FLAG_SETUP(flag_num, flag, data);
|
|
|
|
FLAG_WAIT_FOR_OP(flag, data->mcb_operation_count);
|
|
|
|
++data->mcb_operation_count;
|
|
|
|
|
|
|
|
/* Loop over all the segments in this set */
|
|
|
|
|
2005-10-01 03:12:23 +04:00
|
|
|
segment_num =
|
|
|
|
flag_num * mca_coll_sm_component.sm_segs_per_inuse_flag;
|
|
|
|
max_segment_num =
|
|
|
|
(flag_num + 1) * mca_coll_sm_component.sm_segs_per_inuse_flag;
|
2005-09-15 06:18:16 +04:00
|
|
|
do {
|
|
|
|
index = &(data->mcb_mpool_index[segment_num]);
|
|
|
|
|
2005-10-04 18:52:59 +04:00
|
|
|
/* Copy from the user's buffer to my shared mem
|
2005-09-15 06:18:16 +04:00
|
|
|
segment */
|
|
|
|
COPY_FRAGMENT_IN(convertor, index, rank, iov, max_data);
|
|
|
|
bytes += max_data;
|
|
|
|
|
|
|
|
/* Wait for the write to absolutely complete */
|
|
|
|
opal_atomic_wmb();
|
|
|
|
|
2005-10-04 18:52:59 +04:00
|
|
|
/* Tell my parent (always the reduction root -- we're
|
|
|
|
ignoring the mcb_tree parent/child relationships
|
|
|
|
here) that this fragment is ready */
|
|
|
|
CHILD_NOTIFY_PARENT(rank, root, index, max_data);
|
2005-09-15 06:18:16 +04:00
|
|
|
|
|
|
|
++segment_num;
|
|
|
|
} while (bytes < total_size && segment_num < max_segment_num);
|
|
|
|
|
|
|
|
/* We're finished with this set of segments */
|
|
|
|
FLAG_RELEASE(flag);
|
|
|
|
} while (bytes < total_size);
|
|
|
|
|
|
|
|
/* Kill the convertor */
|
|
|
|
|
|
|
|
OBJ_DESTRUCT(&convertor);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* All done */
|
|
|
|
|
|
|
|
return OMPI_SUCCESS;
|
2004-08-21 04:49:07 +04:00
|
|
|
}
|
|
|
|
|
2005-09-15 06:18:16 +04:00
|
|
|
|
|
|
|
#if WANT_REDUCE_NO_ORDER
|
|
|
|
/**
|
|
|
|
* Unordered shared memory reduction.
|
|
|
|
*
|
|
|
|
* This function performs the reduction in whatever order the operands
|
|
|
|
* arrive.
|
|
|
|
*/
|
|
|
|
static int reduce_no_order(void *sbuf, void* rbuf, int count,
|
|
|
|
struct ompi_datatype_t *dtype,
|
|
|
|
struct ompi_op_t *op,
|
|
|
|
int root, struct ompi_communicator_t *comm)
|
|
|
|
{
|
|
|
|
return OMPI_ERR_NOT_IMPLEMENTED;
|
|
|
|
}
|
|
|
|
#endif
|