1
1
openmpi/ompi/mca/coll/sm2/coll_sm2_allreduce.c

1053 строки
36 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2007-2008 UT-Battelle, LLC
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
/** @file */
#include "ompi_config.h"
#include "ompi/constants.h"
#include "coll_sm2.h"
#include "ompi/op/op.h"
#include "ompi/datatype/datatype.h"
#include "ompi/communicator/communicator.h"
/* debug */
#include "opal/sys/timer.h"
extern uint64_t timers[7];
/* end debug */
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_fanin_fanout(void *sbuf, void *rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int my_rank, child_rank, child, n_parents, n_children;
int my_fanin_parent,count_processed,count_this_stripe;
int my_fanout_parent;
size_t message_extent,dt_extent,ctl_size,len_data_buffer;
long long tag;
volatile char * sm_buffer;
volatile char * my_data_pointer;
volatile char * child_data_pointer;
volatile char * parent_data_pointer;
char *my_base_temp_pointer;
volatile char * child_base_temp_pointer;
volatile char * parent_base_temp_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t * child_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t * parent_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
tree_node_t *my_reduction_node, *my_fanout_read_tree;
sm_work_buffer_t *sm_buffer_desc;
sm_module=(mca_coll_sm2_module_t *) module;
/* get unique tag for this collective - assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
tag=sm_module->collective_tag;
sm_module->collective_tag++;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_size(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
message_extent=dt_extent*count;
/* lenght of control and data regions */
ctl_size=sm_module->ctl_memory_per_proc_per_segment;
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_rank=ompi_comm_rank(comm);
my_reduction_node=&(sm_module->reduction_tree[my_rank]);
my_fanout_read_tree=&(sm_module->fanout_read_tree[my_rank]);
n_children=my_reduction_node->n_children;
n_parents=my_reduction_node->n_parents;
my_fanin_parent=my_reduction_node->parent_rank;
my_fanout_parent=my_fanout_read_tree->parent_rank;
count_processed=0;
/* get a pointer to the shared-memory working buffer */
/* NOTE: starting with a rather synchronous approach */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
sm_buffer=sm_buffer_desc->base_segment_address;
if( NULL == sm_buffer) {
rc=OMPI_ERR_OUT_OF_RESOURCE;
goto Error;
}
/* get number of elements to process in this stripe */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* get base address to "my" memory segment */
my_base_temp_pointer=(char *)
((char *)sm_buffer+sm_module->sm_buffer_mgmt_barrier_tree.my_rank*
sm_module->segement_size_per_process);
/* offset to data segment */
my_data_pointer=my_base_temp_pointer+ctl_size;
my_ctl_pointer=(mca_coll_sm2_nb_request_process_shared_mem_t *)
my_base_temp_pointer;
/***************************
* Fan into root phase
***************************/
if( LEAF_NODE != my_reduction_node->my_node_type ) {
/* copy segment into shared buffer - ompi_op_reduce
* provids only 2 buffers, so can't add from two
* into a third buffer.
*/
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/*
* Wait on children, and apply op to their data
*/
for( child=0 ; child < n_children ; child++ ) {
child_rank=my_reduction_node->children_ranks[child];
/* get base address of child process */
child_base_temp_pointer=(char *)
((char *)sm_buffer+child_rank*
sm_module->segement_size_per_process);
child_data_pointer=child_base_temp_pointer+ctl_size;
child_ctl_pointer=
( mca_coll_sm2_nb_request_process_shared_mem_t * volatile)
child_base_temp_pointer;
/* wait until child flag is set */
while(!
( (child_ctl_pointer->flag == tag) &
(child_ctl_pointer->index== stripe_number) ) ) {
/* Note: Actually need to make progress here */
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)child_data_pointer,
(void *)my_data_pointer, count_this_stripe,dtype);
/* test
{
int ii,n_ints;
int *my_int=(int *)my_data_pointer;
int *child_int=(int *)child_data_pointer;
n_ints=count_this_stripe/4;
for(ii=0 ; ii < n_ints ; ii++ ) {
my_int[ii]+=child_data_pointer[ii];
}
}
end test */
/* end test */
} /* end child loop */
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
my_ctl_pointer->index=stripe_number;
} else {
/* leaf node */
/* copy segment into shared buffer - later on will optimize to
* eliminate extra copies.
*/
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
my_ctl_pointer->index=stripe_number;
}
/***************************
* Fan into root phase
***************************/
/*
* Fan out from root - let the memory copies at each
* stage help reduce memory contention.
*/
if( ROOT_NODE == my_fanout_read_tree->my_node_type ) {
/* I am the root - so copy signal children, and then
* start reading
*/
MB();
my_ctl_pointer->flag=-tag;
/* copy data to user supplied buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
} else if( LEAF_NODE == my_fanout_read_tree->my_node_type ) {
parent_base_temp_pointer=(char *)
((char *)sm_buffer+my_fanout_parent*
sm_module->segement_size_per_process);
parent_data_pointer=(volatile char *)
((char *)parent_base_temp_pointer+ctl_size);
parent_ctl_pointer=(volatile
mca_coll_sm2_nb_request_process_shared_mem_t *)
parent_base_temp_pointer;
child_ctl_pointer=
(volatile mca_coll_sm2_nb_request_process_shared_mem_t *)
parent_data_pointer;
/*
* wait on Parent to signal that data is ready
*/
while(!
( (parent_ctl_pointer->flag == -tag) &
(parent_ctl_pointer->index== stripe_number) ) ) {
/* Note: Actually need to make progress here */
opal_progress();
}
/* copy data to user supplied buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)rbuf+dt_extent*count_processed,
(char *)parent_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
} else {
/* interior nodes */
parent_base_temp_pointer=(char *)
((char *)sm_buffer+my_fanout_parent*
sm_module->segement_size_per_process);
parent_data_pointer=(volatile char *)
((char *)parent_base_temp_pointer+ctl_size);
parent_ctl_pointer=(volatile
mca_coll_sm2_nb_request_process_shared_mem_t *)
parent_base_temp_pointer;
child_ctl_pointer=
(volatile mca_coll_sm2_nb_request_process_shared_mem_t *)
parent_data_pointer;
/*
* wait on Parent to signal that data is ready
*/
while(!
( (parent_ctl_pointer->flag == -tag) &
(parent_ctl_pointer->index== stripe_number) ) ) {
/* Note: Actually need to make progress here */
opal_progress();
}
/* copy the data to my shared buffer, for access by children */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_data_pointer,(char *)parent_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/* signal children that they may read the result data */
my_ctl_pointer->flag=-tag;
/* copy data to user supplied buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)rbuf+dt_extent*count_processed,
(char *)my_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
}
/* "free" the shared-memory working buffer */
rc=free_sm2_shared_buffer(sm_module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
/* return */
return rc;
Error:
return rc;
}
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_recursive_doubling(void *sbuf, void *rbuf,
int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int pair_rank,exchange,extra_rank;
int index_read,index_write;
pair_exchange_node_t *my_exchange_node;
int my_rank,count_processed,count_this_stripe;
size_t message_extent,dt_extent,ctl_size,len_data_buffer;
long long tag, base_tag;
sm_work_buffer_t *sm_buffer_desc;
volatile char * sm_buffer;
volatile char * my_tmp_data_buffer[2];
volatile char * my_write_pointer;
volatile char * my_read_pointer;
volatile char * extra_rank_write_data_pointer;
volatile char * extra_rank_read_data_pointer;
volatile char * partner_read_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
partner_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
extra_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
/* debug */
opal_timer_t t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
/* end debug */
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_size(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
message_extent=dt_extent*count;
/* lenght of control and data regions */
ctl_size=sm_module->ctl_memory_per_proc_per_segment;
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* need a read and a write buffer for a pair-wise exchange of data */
n_dts_per_buffer/=2;
len_data_buffer=n_dts_per_buffer*dt_extent;
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_exchange_node=&(sm_module->recursive_doubling_tree);
my_rank=ompi_comm_rank(comm);
count_processed=0;
/* debug */
t0=opal_sys_timer_get_cycles();
/* end debug */
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
/* debug */
t1=opal_sys_timer_get_cycles();
/* end debug */
/* get a pointer to the shared-memory working buffer */
/* NOTE: starting with a rather synchronous approach */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get number of elements to process in this stripe */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* get unique set of tags for this stripe.
* Assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
base_tag=sm_module->collective_tag;
sm_module->collective_tag+=my_exchange_node->n_tags;
/* get pointers to my work buffers */
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_write_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
my_read_pointer=my_write_pointer+len_data_buffer;
my_tmp_data_buffer[0]=my_write_pointer;
my_tmp_data_buffer[1]=my_read_pointer;
/* debug */
t2=opal_sys_timer_get_cycles();
timers[0]+=(t2-t1);
/* end debug */
/* copy data into the write buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug */
t3=opal_sys_timer_get_cycles();
timers[1]+=(t3-t2);
/* end debug */
/* copy data in from the "extra" source, if need be */
tag=base_tag;
if(0 < my_exchange_node->n_extra_sources) {
if ( EXCHANGE_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_write_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)extra_rank_write_data_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
} else {
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
}
MB();
/*
* Signal parent that data is ready
*/
tag=base_tag+1;
my_ctl_pointer->flag=tag;
/* loop over data exchanges */
for(exchange=0 ; exchange < my_exchange_node->n_exchanges ; exchange++) {
/* debug */
t4=opal_sys_timer_get_cycles();
/* end debug */
index_read=(exchange&1);
index_write=((exchange+1)&1);
my_write_pointer=my_tmp_data_buffer[index_write];
my_read_pointer=my_tmp_data_buffer[index_read];
/* is the remote data read */
pair_rank=my_exchange_node->rank_exchanges[exchange];
partner_ctl_pointer=
sm_buffer_desc->proc_memory[pair_rank].control_region;
partner_read_pointer=
sm_buffer_desc->proc_memory[pair_rank].data_segment;
if( 1 == index_read ) {
partner_read_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug */
t5=opal_sys_timer_get_cycles();
timers[2]+=(t5-t4);
/* end debug */
/* reduce data into my write buffer */
/* apply collective operation */
/*
ompi_op_reduce(op,(void *)partner_read_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
*/
/* test */
{
int ii,n_ints;
int * restrict my_read=(int *)my_read_pointer;
int * restrict my_write=(int *)my_write_pointer;
int * restrict exchange_read=(int *)partner_read_pointer;
n_ints=count_this_stripe;
for(ii=0 ; ii < n_ints ; ii++ ) {
my_write[ii]=my_read[ii]+exchange_read[ii];
}
}
/* debug */
t6=opal_sys_timer_get_cycles();
timers[3]+=(t6-t5);
/* end debug */
/* end test */
/* signal that I am done reading my peer's data */
tag++;
MB();
my_ctl_pointer->flag=tag;
/* wait for my peer to finish - other wise buffers may be
* reused too early */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug */
t7=opal_sys_timer_get_cycles();
timers[4]+=(t7-t6);
/* end debug */
}
/* copy data in from the "extra" source, if need be */
if(0 < my_exchange_node->n_extra_sources) {
tag=base_tag+my_exchange_node->n_tags-1;
if ( EXTRA_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_read_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
index_read=(my_exchange_node->log_2&1);
if( index_read ) {
extra_rank_read_data_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while(! ( extra_ctl_pointer->flag == tag ) ) {
opal_progress();
}
/* write the data into my read buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)extra_rank_read_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* signal that I am done */
my_ctl_pointer->flag=tag;
} else {
tag=base_tag+my_exchange_node->n_tags-1;
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
/* wait until child is done to move on - this buffer will
* be reused for the next stripe, so don't want to move
* on too quick.
*/
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
}
}
/* debug */
t8=opal_sys_timer_get_cycles();
/* end debug */
/* copy data into the destination buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_write_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
/* debug */
t9=opal_sys_timer_get_cycles();
timers[5]+=(t9-t8);
/* end debug */
/* "free" the shared-memory working buffer */
rc=free_sm2_shared_buffer(sm_module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* debug */
t10=opal_sys_timer_get_cycles();
timers[6]+=(t10-t9);
/* end debug */
/* return */
return rc;
Error:
return rc;
}
#if 0
/* just storing various versions of the recursive doubling algorithm,
* so can compare them later on.
*/
/**
* Shared memory blocking allreduce.
*/
static
int mca_coll_sm2_allreduce_intra_recursive_doubling(void *sbuf, void *rbuf,
int count, struct ompi_datatype_t *dtype,
struct ompi_op_t *op, struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc=OMPI_SUCCESS,n_dts_per_buffer,n_data_segments,stripe_number;
int pair_rank,exchange,extra_rank;
int index_read,index_write;
pair_exchange_node_t *my_exchange_node;
int my_rank,count_processed,count_this_stripe;
size_t message_extent,dt_extent,ctl_size,len_data_buffer;
long long tag, base_tag;
sm_work_buffer_t *sm_buffer_desc;
volatile char * my_tmp_data_buffer[2];
volatile char * my_write_pointer;
volatile char * my_read_pointer;
volatile char * extra_rank_write_data_pointer;
volatile char * extra_rank_read_data_pointer;
volatile char * partner_read_pointer;
mca_coll_sm2_nb_request_process_shared_mem_t *my_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
partner_ctl_pointer;
volatile mca_coll_sm2_nb_request_process_shared_mem_t *
extra_ctl_pointer;
mca_coll_sm2_module_t *sm_module;
/* debug */
opal_timer_t t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10;
/* end debug */
sm_module=(mca_coll_sm2_module_t *) module;
/* get size of data needed - same layout as user data, so that
* we can apply the reudction routines directly on these buffers
*/
rc=ompi_ddt_type_size(dtype, &dt_extent);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
message_extent=dt_extent*count;
/* lenght of control and data regions */
ctl_size=sm_module->ctl_memory_per_proc_per_segment;
len_data_buffer=sm_module->data_memory_per_proc_per_segment;
/* number of data types copies that the scratch buffer can hold */
n_dts_per_buffer=((int) len_data_buffer)/dt_extent;
if ( 0 == n_dts_per_buffer ) {
rc=OMPI_ERROR;
goto Error;
}
/* need a read and a write buffer for a pair-wise exchange of data */
n_dts_per_buffer/=2;
len_data_buffer=n_dts_per_buffer*dt_extent;
/* compute number of stripes needed to process this collective */
n_data_segments=(count+n_dts_per_buffer -1 ) / n_dts_per_buffer ;
/* get my node for the reduction tree */
my_exchange_node=&(sm_module->recursive_doubling_tree);
my_rank=ompi_comm_rank(comm);
count_processed=0;
/* get a pointer to the shared-memory working buffer */
/* NOTE: starting with a rather synchronous approach */
/* debug */
t0=opal_sys_timer_get_cycles();
/* end debug */
/* use the same set of buffers for a single reduction */
sm_buffer_desc=alloc_sm2_shared_buffer(sm_module);
/* get pointers to my work buffers */
my_ctl_pointer=sm_buffer_desc->proc_memory[my_rank].control_region;
my_write_pointer=sm_buffer_desc->proc_memory[my_rank].data_segment;
my_read_pointer=my_write_pointer+len_data_buffer;
my_tmp_data_buffer[0]=my_write_pointer;
my_tmp_data_buffer[1]=my_read_pointer;
/* debug */
t1=opal_sys_timer_get_cycles();
/* end debug */
for( stripe_number=0 ; stripe_number < n_data_segments ; stripe_number++ ) {
/* get number of elements to process in this stripe */
count_this_stripe=n_dts_per_buffer;
if( count_processed + count_this_stripe > count )
count_this_stripe=count-count_processed;
/* get unique set of tags for this stripe.
* Assume only one collective
* per communicator at a given time, so no locking needed
* for atomic update of the tag */
base_tag=sm_module->collective_tag;
sm_module->collective_tag+=my_exchange_node->n_tags;
/* debug */
t2=opal_sys_timer_get_cycles();
timers[0]+=(t2-t1);
/* end debug */
/* copy data into the write buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)((char *)sbuf+dt_extent*count_processed));
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug */
t3=opal_sys_timer_get_cycles();
timers[1]+=(t3-t2);
/* end debug */
/* copy data in from the "extra" source, if need be */
tag=base_tag;
if(0 < my_exchange_node->n_extra_sources) {
if ( EXCHANGE_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_write_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
/* wait until remote data is read */
while( extra_ctl_pointer->flag < tag ) {
opal_progress();
}
/* apply collective operation */
ompi_op_reduce(op,(void *)extra_rank_write_data_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
} else {
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
}
}
MB();
/*
* Signal parent that data is ready
*/
tag=base_tag+1;
my_ctl_pointer->flag=tag;
/* loop over data exchanges */
for(exchange=0 ; exchange < my_exchange_node->n_exchanges ; exchange++) {
/* debug */
t4=opal_sys_timer_get_cycles();
/* end debug */
index_read=(exchange&1);
index_write=((exchange+1)&1);
my_write_pointer=my_tmp_data_buffer[index_write];
my_read_pointer=my_tmp_data_buffer[index_read];
/* is the remote data read */
pair_rank=my_exchange_node->rank_exchanges[exchange];
partner_ctl_pointer=
sm_buffer_desc->proc_memory[pair_rank].control_region;
partner_read_pointer=
sm_buffer_desc->proc_memory[pair_rank].data_segment;
if( 1 == index_read ) {
partner_read_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug */
t5=opal_sys_timer_get_cycles();
timers[2]+=(t5-t4);
/* end debug */
/* reduce data into my write buffer */
/* apply collective operation */
/*
ompi_op_reduce(op,(void *)partner_read_pointer,
(void *)my_write_pointer, count_this_stripe,dtype);
*/
/* test */
{
int ii,n_ints;
int * restrict my_read=(int *)my_read_pointer;
int * restrict my_write=(int *)my_write_pointer;
int * restrict exchange_read=(int *)partner_read_pointer;
n_ints=count_this_stripe;
for(ii=0 ; ii < n_ints ; ii++ ) {
my_write[ii]=my_read[ii]+exchange_read[ii];
}
}
/* debug */
t6=opal_sys_timer_get_cycles();
timers[3]+=(t6-t5);
/* end debug */
/* end test */
/* signal that I am done reading my peer's data */
tag++;
MB();
my_ctl_pointer->flag=tag;
/* wait for my peer to finish - other wise buffers may be
* reused too early */
while( partner_ctl_pointer->flag < tag ) {
opal_progress();
}
/* debug */
t7=opal_sys_timer_get_cycles();
timers[4]+=(t7-t6);
/* end debug */
}
/* copy data in from the "extra" source, if need be */
if(0 < my_exchange_node->n_extra_sources) {
tag=base_tag+my_exchange_node->n_tags-1;
if ( EXTRA_NODE == my_exchange_node->node_type ) {
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
extra_rank_read_data_pointer=
sm_buffer_desc->proc_memory[extra_rank].data_segment;
index_read=(my_exchange_node->log_2&1);
if( index_read ) {
extra_rank_read_data_pointer+=len_data_buffer;
}
/* wait until remote data is read */
while(! ( extra_ctl_pointer->flag == tag ) ) {
opal_progress();
}
/* write the data into my read buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)my_write_pointer,
(char *)extra_rank_read_data_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* signal that I am done */
my_ctl_pointer->flag=tag;
} else {
tag=base_tag+my_exchange_node->n_tags-1;
/* set memory barriet to make sure data is in main memory before
* the completion flgas are set.
*/
MB();
/*
* Signal parent that data is ready
*/
my_ctl_pointer->flag=tag;
/* wait until child is done to move on - this buffer will
* be reused for the next stripe, so don't want to move
* on too quick.
*/
extra_rank=my_exchange_node->rank_extra_source;
extra_ctl_pointer=
sm_buffer_desc->proc_memory[extra_rank].control_region;
/* wait until remote data is read */
while(! ( extra_ctl_pointer->flag < tag ) ) {
opal_progress();
}
}
}
/* debug */
t8=opal_sys_timer_get_cycles();
/* end debug */
/* copy data into the destination buffer */
rc=ompi_ddt_copy_content_same_ddt(dtype, count_this_stripe,
(char *)((char *)rbuf+dt_extent*count_processed),
(char *)my_write_pointer);
if( 0 != rc ) {
return OMPI_ERROR;
}
/* debug */
t9=opal_sys_timer_get_cycles();
timers[5]+=(t9-t8);
/* end debug */
/* "free" the shared-memory working buffer */
/* debug */
t10=opal_sys_timer_get_cycles();
timers[6]+=(t10-t9);
/* end debug */
/* update the count of elements processed */
count_processed+=count_this_stripe;
}
rc=free_sm2_shared_buffer(sm_module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
/* return */
return rc;
Error:
return rc;
}
#endif
/**
* Shared memory blocking allreduce.
*/
int mca_coll_sm2_allreduce_intra(void *sbuf, void *rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
struct ompi_communicator_t *comm,
struct mca_coll_base_module_1_1_0_t *module)
{
/* local variables */
int rc;
if( 0 != (op->o_flags & OMPI_OP_FLAGS_COMMUTE)) {
/* Commutative Operation */
rc= mca_coll_sm2_allreduce_intra_recursive_doubling(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
} else {
/* Non-Commutative Operation */
rc= mca_coll_sm2_allreduce_intra_fanin_fanout(sbuf, rbuf, count,
dtype, op, comm, module);
if( OMPI_SUCCESS != rc ) {
goto Error;
}
}
return OMPI_SUCCESS;
Error:
return rc;
}