2018-11-29 01:52:52 +03:00
|
|
|
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
|
2007-05-17 05:17:59 +04:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
|
|
|
|
* University Research and Technology
|
|
|
|
* Corporation. All rights reserved.
|
|
|
|
* Copyright (c) 2004-2005 The University of Tennessee and The University
|
|
|
|
* of Tennessee Research Foundation. All rights
|
|
|
|
* reserved.
|
2015-06-24 06:59:57 +03:00
|
|
|
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
|
2007-05-17 05:17:59 +04:00
|
|
|
* University of Stuttgart. All rights reserved.
|
|
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
|
|
* All rights reserved.
|
|
|
|
* Copyright (c) 2007 Los Alamos National Security, LLC. All rights
|
2015-06-24 06:59:57 +03:00
|
|
|
* reserved.
|
2015-02-12 20:45:49 +03:00
|
|
|
* Copyright (c) 2009-2015 Cisco Systems, Inc. All rights reserved.
|
2015-06-18 19:53:20 +03:00
|
|
|
* Copyright (c) 2013 Intel, Inc. All rights reserved.
|
2015-06-08 03:13:11 +03:00
|
|
|
* Copyright (c) 2015 Research Organization for Information Science
|
|
|
|
* and Technology (RIST). All rights reserved.
|
2018-09-28 20:49:41 +03:00
|
|
|
* Copyright (c) 2018 Amazon.com, Inc. or its affiliates. All Rights
|
|
|
|
* reserved.
|
2018-11-29 01:52:52 +03:00
|
|
|
* Copyright (c) 2018 Triad National Security, LLC. All rights
|
|
|
|
* reserved.
|
2007-05-17 05:17:59 +04:00
|
|
|
* $COPYRIGHT$
|
2015-06-24 06:59:57 +03:00
|
|
|
*
|
2007-05-17 05:17:59 +04:00
|
|
|
* Additional copyrights may follow
|
2015-06-24 06:59:57 +03:00
|
|
|
*
|
2007-05-17 05:17:59 +04:00
|
|
|
* $HEADER$
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "opal_config.h"
|
|
|
|
|
2015-06-08 03:13:11 +03:00
|
|
|
#include <stdio.h>
|
2007-05-17 05:17:59 +04:00
|
|
|
#include <string.h>
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
|
|
|
#include <errno.h>
|
|
|
|
#ifdef HAVE_SYS_TYPES_H
|
|
|
|
#include <sys/types.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_SOCKET_H
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_SOCKIO_H
|
|
|
|
#include <sys/sockio.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_NETINET_IN_H
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_ARPA_INET_H
|
|
|
|
#include <arpa/inet.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_NET_IF_H
|
|
|
|
#include <net/if.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_NETDB_H
|
|
|
|
#include <netdb.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_IFADDRS_H
|
|
|
|
#include <ifaddrs.h>
|
|
|
|
#endif
|
|
|
|
|
2018-11-29 01:52:52 +03:00
|
|
|
#include "opal/runtime/opal.h"
|
2007-05-17 05:17:59 +04:00
|
|
|
#include "opal/util/net.h"
|
|
|
|
#include "opal/util/output.h"
|
2009-03-04 01:06:09 +03:00
|
|
|
#include "opal/util/argv.h"
|
2009-07-09 15:58:31 +04:00
|
|
|
#include "opal/util/show_help.h"
|
2007-05-17 05:17:59 +04:00
|
|
|
#include "opal/constants.h"
|
2019-02-05 06:20:37 +03:00
|
|
|
#include "opal/mca/threads/tsd.h"
|
2013-03-28 01:09:41 +04:00
|
|
|
#include "opal/runtime/opal_params.h"
|
2007-05-17 05:17:59 +04:00
|
|
|
|
2012-11-10 18:01:12 +04:00
|
|
|
/* this function doesn't depend on sockaddr_h */
|
|
|
|
bool opal_net_isaddr(const char *name)
|
|
|
|
{
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
struct addrinfo hint, *res = NULL;
|
2012-11-10 18:01:12 +04:00
|
|
|
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
/* initialize the hint */
|
|
|
|
memset(&hint, '\0', sizeof hint);
|
2012-11-10 18:01:12 +04:00
|
|
|
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
/* indicate that we don't know the family */
|
|
|
|
hint.ai_family = PF_UNSPEC;
|
|
|
|
hint.ai_flags = AI_NUMERICHOST;
|
2012-11-10 18:01:12 +04:00
|
|
|
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
if (0 != getaddrinfo(name, NULL, &hint, &res)) {
|
|
|
|
/* the input wasn't a recognizable address */
|
2012-11-10 18:01:12 +04:00
|
|
|
return false;
|
|
|
|
}
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
/* we don't care what family - all we care is that
|
|
|
|
* it is indeed an address
|
|
|
|
*/
|
|
|
|
freeaddrinfo(res);
|
2012-11-10 18:01:12 +04:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2007-05-30 19:25:22 +04:00
|
|
|
#ifdef HAVE_STRUCT_SOCKADDR_IN
|
2007-05-17 05:17:59 +04:00
|
|
|
|
2009-03-04 01:06:09 +03:00
|
|
|
typedef struct private_ipv4_t {
|
2009-04-01 19:18:08 +04:00
|
|
|
in_addr_t addr;
|
2009-03-04 01:06:09 +03:00
|
|
|
uint32_t netmask_bits;
|
|
|
|
} private_ipv4_t;
|
|
|
|
|
|
|
|
static private_ipv4_t* private_ipv4 = NULL;
|
|
|
|
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2007-07-19 00:25:01 +04:00
|
|
|
static opal_tsd_key_t hostname_tsd_key;
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
hostname_cleanup(void *value)
|
|
|
|
{
|
|
|
|
if (NULL != value) free(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static char*
|
|
|
|
get_hostname_buffer(void)
|
|
|
|
{
|
|
|
|
void *buffer;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = opal_tsd_getspecific(hostname_tsd_key, &buffer);
|
|
|
|
if (OPAL_SUCCESS != ret) return NULL;
|
|
|
|
|
|
|
|
if (NULL == buffer) {
|
|
|
|
buffer = (void*) malloc((NI_MAXHOST + 1) * sizeof(char));
|
|
|
|
ret = opal_tsd_setspecific(hostname_tsd_key, buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (char*) buffer;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2018-11-29 01:52:52 +03:00
|
|
|
/**
|
|
|
|
* Finalize the network helper subsystem
|
|
|
|
*
|
|
|
|
* Finalize the network helper subsystem. Should be called exactly
|
|
|
|
* once for any process that will use any function in the network
|
|
|
|
* helper subsystem.
|
|
|
|
*
|
|
|
|
* @retval OPAL_SUCCESS Success
|
|
|
|
*/
|
|
|
|
static void opal_net_finalize (void)
|
|
|
|
{
|
|
|
|
free(private_ipv4);
|
|
|
|
private_ipv4 = NULL;
|
|
|
|
}
|
|
|
|
|
2007-07-19 00:25:01 +04:00
|
|
|
int
|
2015-02-12 20:45:49 +03:00
|
|
|
opal_net_init(void)
|
2007-07-19 00:25:01 +04:00
|
|
|
{
|
2013-03-28 01:09:41 +04:00
|
|
|
char **args, *arg;
|
2009-03-04 01:06:09 +03:00
|
|
|
uint32_t a, b, c, d, bits, addr;
|
2009-07-09 15:58:31 +04:00
|
|
|
int i, count, found_bad = 0;
|
2009-03-04 01:06:09 +03:00
|
|
|
|
2013-03-28 01:09:41 +04:00
|
|
|
args = opal_argv_split( opal_net_private_ipv4, ';' );
|
2009-03-04 01:06:09 +03:00
|
|
|
if( NULL != args ) {
|
|
|
|
count = opal_argv_count(args);
|
|
|
|
private_ipv4 = (private_ipv4_t*)malloc( (count + 1) * sizeof(private_ipv4_t));
|
|
|
|
if( NULL == private_ipv4 ) {
|
|
|
|
opal_output(0, "Unable to allocate memory for the private addresses array" );
|
2015-02-12 20:45:49 +03:00
|
|
|
opal_argv_free(args);
|
2009-03-04 01:06:09 +03:00
|
|
|
goto do_local_init;
|
|
|
|
}
|
|
|
|
for( i = 0; i < count; i++ ) {
|
|
|
|
arg = args[i];
|
|
|
|
|
2015-08-30 07:19:27 +03:00
|
|
|
(void)sscanf( arg, "%u.%u.%u.%u/%u", &a, &b, &c, &d, &bits );
|
2009-03-04 01:06:09 +03:00
|
|
|
|
2015-06-06 20:12:19 +03:00
|
|
|
if( (a > 255) || (b > 255) || (c > 255) ||
|
|
|
|
(d > 255) || (bits > 32) ) {
|
2009-07-09 15:58:31 +04:00
|
|
|
if (0 == found_bad) {
|
2015-06-24 06:59:57 +03:00
|
|
|
opal_show_help("help-opal-util.txt",
|
2011-06-06 07:08:02 +04:00
|
|
|
"malformed net_private_ipv4",
|
2009-07-09 15:58:31 +04:00
|
|
|
true, args[i]);
|
|
|
|
found_bad = 1;
|
|
|
|
}
|
2009-03-04 01:06:09 +03:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
addr = (a << 24) | (b << 16) | (c << 8) | d;
|
|
|
|
private_ipv4[i].addr = htonl(addr);
|
|
|
|
private_ipv4[i].netmask_bits = bits;
|
|
|
|
}
|
|
|
|
private_ipv4[i].addr = 0;
|
|
|
|
private_ipv4[i].netmask_bits = 0;
|
2009-03-04 01:14:05 +03:00
|
|
|
opal_argv_free(args);
|
2009-03-04 01:06:09 +03:00
|
|
|
}
|
|
|
|
|
2018-11-29 01:52:52 +03:00
|
|
|
opal_finalize_register_cleanup (opal_net_finalize);
|
|
|
|
|
2009-03-04 01:06:09 +03:00
|
|
|
do_local_init:
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2007-07-19 00:25:01 +04:00
|
|
|
return opal_tsd_key_create(&hostname_tsd_key, hostname_cleanup);
|
|
|
|
#else
|
|
|
|
return OPAL_SUCCESS;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2007-05-17 05:17:59 +04:00
|
|
|
/* convert a CIDR prefixlen to netmask (in network byte order) */
|
|
|
|
uint32_t
|
|
|
|
opal_net_prefix2netmask(uint32_t prefixlen)
|
|
|
|
{
|
|
|
|
return htonl (((1 << prefixlen) - 1) << (32 - prefixlen));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_islocalhost(const struct sockaddr *addr)
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
|
|
|
switch (addr->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
{
|
2007-07-22 23:19:01 +04:00
|
|
|
const struct sockaddr_in *inaddr = (struct sockaddr_in*) addr;
|
2007-05-17 05:17:59 +04:00
|
|
|
/* if it's in the 127. domain, it shouldn't be routed
|
|
|
|
(0x7f == 127) */
|
|
|
|
if (0x7F000000 == (0x7F000000 & ntohl(inaddr->sin_addr.s_addr))) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2010-10-25 18:31:18 +04:00
|
|
|
case AF_INET6:
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
2007-07-22 23:19:01 +04:00
|
|
|
const struct sockaddr_in6 *inaddr = (struct sockaddr_in6*) addr;
|
2007-05-17 05:17:59 +04:00
|
|
|
if (IN6_IS_ADDR_LOOPBACK (&inaddr->sin6_addr)) {
|
|
|
|
return true; /* Bug, FIXME: check for 127.0.0.1/8 */
|
|
|
|
}
|
2010-10-25 18:31:18 +04:00
|
|
|
return false;
|
2007-05-17 05:17:59 +04:00
|
|
|
}
|
2010-10-25 17:56:23 +04:00
|
|
|
break;
|
2010-10-25 18:31:18 +04:00
|
|
|
#endif
|
2007-05-17 05:17:59 +04:00
|
|
|
|
|
|
|
default:
|
|
|
|
opal_output(0, "unhandled sa_family %d passed to opal_net_islocalhost",
|
|
|
|
addr->sa_family);
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
2015-06-24 06:59:57 +03:00
|
|
|
opal_net_samenetwork(const struct sockaddr *addr1,
|
2007-07-22 23:19:01 +04:00
|
|
|
const struct sockaddr *addr2,
|
2013-05-15 02:08:39 +04:00
|
|
|
uint32_t plen)
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
2013-05-15 02:08:39 +04:00
|
|
|
uint32_t prefixlen;
|
|
|
|
|
2007-05-17 05:17:59 +04:00
|
|
|
if(addr1->sa_family != addr2->sa_family) {
|
|
|
|
return false; /* address families must be equal */
|
|
|
|
}
|
2015-06-24 06:59:57 +03:00
|
|
|
|
2007-05-17 05:17:59 +04:00
|
|
|
switch (addr1->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
{
|
2013-05-15 02:08:39 +04:00
|
|
|
if (0 == plen) {
|
|
|
|
prefixlen = 32;
|
|
|
|
} else {
|
|
|
|
prefixlen = plen;
|
|
|
|
}
|
2013-12-19 20:51:34 +04:00
|
|
|
struct sockaddr_in inaddr1, inaddr2;
|
|
|
|
/* Use temporary variables and memcpy's so that we don't
|
|
|
|
run into bus errors on Solaris/SPARC */
|
|
|
|
memcpy(&inaddr1, addr1, sizeof(inaddr1));
|
|
|
|
memcpy(&inaddr2, addr2, sizeof(inaddr2));
|
2007-05-17 05:17:59 +04:00
|
|
|
uint32_t netmask = opal_net_prefix2netmask (prefixlen);
|
|
|
|
|
2013-12-19 20:51:34 +04:00
|
|
|
if((inaddr1.sin_addr.s_addr & netmask) ==
|
|
|
|
(inaddr2.sin_addr.s_addr & netmask)) {
|
2007-05-17 05:17:59 +04:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
break;
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2010-10-25 18:31:18 +04:00
|
|
|
case AF_INET6:
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
2013-12-19 20:51:34 +04:00
|
|
|
struct sockaddr_in6 inaddr1, inaddr2;
|
|
|
|
/* Use temporary variables and memcpy's so that we don't
|
|
|
|
run into bus errors on Solaris/SPARC */
|
|
|
|
memcpy(&inaddr1, addr1, sizeof(inaddr1));
|
|
|
|
memcpy(&inaddr2, addr2, sizeof(inaddr2));
|
|
|
|
struct in6_addr *a6_1 = (struct in6_addr*) &inaddr1.sin6_addr;
|
|
|
|
struct in6_addr *a6_2 = (struct in6_addr*) &inaddr2.sin6_addr;
|
2007-05-17 05:17:59 +04:00
|
|
|
|
2013-05-15 02:08:39 +04:00
|
|
|
if (0 == plen) {
|
|
|
|
prefixlen = 64;
|
|
|
|
} else {
|
|
|
|
prefixlen = plen;
|
|
|
|
}
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
if (64 == prefixlen) {
|
2007-05-17 05:17:59 +04:00
|
|
|
/* prefixlen is always /64, any other case would be routing.
|
|
|
|
Compare the first eight bytes (64 bits) and hope that
|
|
|
|
endianess is not an issue on any system as long as
|
|
|
|
addresses are always stored in network byte order.
|
|
|
|
*/
|
|
|
|
if (((const uint32_t *) (a6_1))[0] ==
|
|
|
|
((const uint32_t *) (a6_2))[0] &&
|
|
|
|
((const uint32_t *) (a6_1))[1] ==
|
|
|
|
((const uint32_t *) (a6_2))[1]) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
2010-10-25 18:31:18 +04:00
|
|
|
return false;
|
2007-05-17 05:17:59 +04:00
|
|
|
}
|
2010-10-25 17:56:23 +04:00
|
|
|
break;
|
2010-10-25 18:31:18 +04:00
|
|
|
#endif
|
2007-05-17 05:17:59 +04:00
|
|
|
default:
|
|
|
|
opal_output(0, "unhandled sa_family %d passed to opal_samenetwork",
|
|
|
|
addr1->sa_family);
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns true if the given address is a public IPv4 address.
|
|
|
|
*/
|
|
|
|
bool
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_addr_isipv4public(const struct sockaddr *addr)
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
|
|
|
switch (addr->sa_family) {
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2007-05-17 05:17:59 +04:00
|
|
|
case AF_INET6:
|
|
|
|
return false;
|
2010-10-25 18:31:18 +04:00
|
|
|
#endif
|
2007-05-17 05:17:59 +04:00
|
|
|
case AF_INET:
|
2009-03-04 01:06:09 +03:00
|
|
|
{
|
|
|
|
const struct sockaddr_in *inaddr = (struct sockaddr_in*) addr;
|
|
|
|
int i;
|
2015-06-24 06:59:57 +03:00
|
|
|
|
2009-03-04 01:06:09 +03:00
|
|
|
if( NULL == private_ipv4 ) {
|
|
|
|
return true;
|
|
|
|
}
|
2015-06-24 06:59:57 +03:00
|
|
|
|
2009-03-04 01:06:09 +03:00
|
|
|
for( i = 0; private_ipv4[i].addr != 0; i++ ) {
|
|
|
|
if( private_ipv4[i].addr == (inaddr->sin_addr.s_addr &
|
|
|
|
opal_net_prefix2netmask(private_ipv4[i].netmask_bits)) )
|
|
|
|
return false;
|
|
|
|
}
|
2015-06-24 06:59:57 +03:00
|
|
|
|
2007-05-17 05:17:59 +04:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
opal_output (0,
|
2007-05-23 14:05:18 +04:00
|
|
|
"unhandled sa_family %d passed to opal_net_addr_isipv4public\n",
|
2007-05-17 05:17:59 +04:00
|
|
|
addr->sa_family);
|
|
|
|
}
|
2015-06-24 06:59:57 +03:00
|
|
|
|
2007-05-17 05:17:59 +04:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-09-15 21:41:15 +03:00
|
|
|
bool
|
|
|
|
opal_net_addr_isipv6linklocal(const struct sockaddr *addr)
|
|
|
|
{
|
2017-11-25 22:48:19 +03:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2017-09-15 21:41:15 +03:00
|
|
|
struct sockaddr_in6 if_addr;
|
2017-11-25 22:48:19 +03:00
|
|
|
#endif
|
2017-09-15 21:41:15 +03:00
|
|
|
|
|
|
|
switch (addr->sa_family) {
|
|
|
|
#if OPAL_ENABLE_IPV6
|
|
|
|
case AF_INET6:
|
|
|
|
if_addr.sin6_family = AF_INET6;
|
|
|
|
if (1 != inet_pton(AF_INET6, "fe80::0000", &if_addr.sin6_addr)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return opal_net_samenetwork(addr, (struct sockaddr*)&if_addr, 64);
|
|
|
|
#endif
|
|
|
|
case AF_INET:
|
|
|
|
return false;
|
|
|
|
default:
|
|
|
|
opal_output (0,
|
|
|
|
"unhandled sa_family %d passed to opal_net_addr_isipv6linklocal\n",
|
|
|
|
addr->sa_family);
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
2007-05-17 05:17:59 +04:00
|
|
|
|
|
|
|
char*
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_get_hostname(const struct sockaddr *addr)
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2007-07-19 00:25:01 +04:00
|
|
|
char *name = get_hostname_buffer();
|
2007-05-17 05:17:59 +04:00
|
|
|
int error;
|
|
|
|
socklen_t addrlen;
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
char *p;
|
2007-05-17 05:17:59 +04:00
|
|
|
|
|
|
|
if (NULL == name) {
|
|
|
|
opal_output(0, "opal_sockaddr2str: malloc() failed\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
2009-05-07 00:11:28 +04:00
|
|
|
OPAL_DEBUG_ZERO(*name);
|
2007-05-17 05:17:59 +04:00
|
|
|
|
|
|
|
switch (addr->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
addrlen = sizeof (struct sockaddr_in);
|
|
|
|
break;
|
|
|
|
case AF_INET6:
|
2015-06-24 06:59:57 +03:00
|
|
|
#if defined( __NetBSD__)
|
2007-05-17 05:17:59 +04:00
|
|
|
/* hotfix for netbsd: on my netbsd machine, getnameinfo
|
|
|
|
returns an unkown error code. */
|
|
|
|
if(NULL == inet_ntop(AF_INET6, &((struct sockaddr_in6*) addr)->sin6_addr,
|
|
|
|
name, NI_MAXHOST)) {
|
|
|
|
opal_output(0, "opal_sockaddr2str failed with error code %d", errno);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return name;
|
|
|
|
#else
|
|
|
|
addrlen = sizeof (struct sockaddr_in6);
|
2010-10-25 18:31:18 +04:00
|
|
|
#endif
|
2007-05-17 05:17:59 +04:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = getnameinfo(addr, addrlen,
|
|
|
|
name, NI_MAXHOST, NULL, 0, NI_NUMERICHOST);
|
|
|
|
|
|
|
|
if (error) {
|
|
|
|
int err = errno;
|
|
|
|
opal_output (0, "opal_sockaddr2str failed:%s (return code %i)\n",
|
|
|
|
gai_strerror(err), error);
|
|
|
|
return NULL;
|
|
|
|
}
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
/* strip any trailing % data as it isn't pertinent */
|
|
|
|
if (NULL != (p = strrchr(name, '%'))) {
|
|
|
|
*p = '\0';
|
|
|
|
}
|
2007-05-17 05:17:59 +04:00
|
|
|
return name;
|
|
|
|
#else
|
|
|
|
return inet_ntoa(((struct sockaddr_in*) addr)->sin_addr);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_get_port(const struct sockaddr *addr)
|
2007-05-17 05:17:59 +04:00
|
|
|
{
|
|
|
|
switch (addr->sa_family) {
|
|
|
|
case AF_INET:
|
|
|
|
return ntohs(((struct sockaddr_in*) addr)->sin_port);
|
|
|
|
break;
|
As per the RFC, bring in the ORTE async progress code and the rewrite of OOB:
*** THIS RFC INCLUDES A MINOR CHANGE TO THE MPI-RTE INTERFACE ***
Note: during the course of this work, it was necessary to completely separate the MPI and RTE progress engines. There were multiple places in the MPI layer where ORTE_WAIT_FOR_COMPLETION was being used. A new OMPI_WAIT_FOR_COMPLETION macro was created (defined in ompi/mca/rte/rte.h) that simply cycles across opal_progress until the provided flag becomes false. Places where the MPI layer blocked waiting for RTE to complete an event have been modified to use this macro.
***************************************************************************************
I am reissuing this RFC because of the time that has passed since its original release. Since its initial release and review, I have debugged it further to ensure it fully supports tests like loop_spawn. It therefore seems ready for merge back to the trunk. Given its prior review, I have set the timeout for one week.
The code is in https://bitbucket.org/rhc/ompi-oob2
WHAT: Rewrite of ORTE OOB
WHY: Support asynchronous progress and a host of other features
WHEN: Wed, August 21
SYNOPSIS:
The current OOB has served us well, but a number of limitations have been identified over the years. Specifically:
* it is only progressed when called via opal_progress, which can lead to hangs or recursive calls into libevent (which is not supported by that code)
* we've had issues when multiple NICs are available as the code doesn't "shift" messages between transports - thus, all nodes had to be available via the same TCP interface.
* the OOB "unloads" incoming opal_buffer_t objects during the transmission, thus preventing use of OBJ_RETAIN in the code when repeatedly sending the same message to multiple recipients
* there is no failover mechanism across NICs - if the selected NIC (or its attached switch) fails, we are forced to abort
* only one transport (i.e., component) can be "active"
The revised OOB resolves these problems:
* async progress is used for all application processes, with the progress thread blocking in the event library
* each available TCP NIC is supported by its own TCP module. The ability to asynchronously progress each module independently is provided, but not enabled by default (a runtime MCA parameter turns it "on")
* multi-address TCP NICs (e.g., a NIC with both an IPv4 and IPv6 address, or with virtual interfaces) are supported - reachability is determined by comparing the contact info for a peer against all addresses within the range covered by the address/mask pairs for the NIC.
* a message that arrives on one TCP NIC is automatically shifted to whatever NIC that is connected to the next "hop" if that peer cannot be reached by the incoming NIC. If no TCP module will reach the peer, then the OOB attempts to send the message via all other available components - if none can reach the peer, then an "error" is reported back to the RML, which then calls the errmgr for instructions.
* opal_buffer_t now conforms to standard object rules re OBJ_RETAIN as we no longer "unload" the incoming object
* NIC failure is reported to the TCP component, which then tries to resend the message across any other available TCP NIC. If that doesn't work, then the message is given back to the OOB base to try using other components. If all that fails, then the error is reported to the RML, which reports to the errmgr for instructions
* obviously from the above, multiple OOB components (e.g., TCP and UD) can be active in parallel
* the matching code has been moved to the RML (and out of the OOB/TCP component) so it is independent of transport
* routing is done by the individual OOB modules (as opposed to the RML). Thus, both routed and non-routed transports can simultaneously be active
* all blocking send/recv APIs have been removed. Everything operates asynchronously.
KNOWN LIMITATIONS:
* although provision is made for component failover as described above, the code for doing so has not been fully implemented yet. At the moment, if all connections for a given peer fail, the errmgr is notified of a "lost connection", which by default results in termination of the job if it was a lifeline
* the IPv6 code is present and compiles, but is not complete. Since the current IPv6 support in the OOB doesn't work anyway, I don't consider this a blocker
* routing is performed at the individual module level, yet the active routed component is selected on a global basis. We probably should update that to reflect that different transports may need/choose to route in different ways
* obviously, not every error path has been tested nor necessarily covered
* determining abnormal termination is more challenging than in the old code as we now potentially have multiple ways of connecting to a process. Ideally, we would declare "connection failed" when *all* transports can no longer reach the process, but that requires some additional (possibly complex) code. For now, the code replicates the old behavior only somewhat modified - i.e., if a module sees its connection fail, it checks to see if it is a lifeline. If so, it notifies the errmgr that the lifeline is lost - otherwise, it notifies the errmgr that a non-lifeline connection was lost.
* reachability is determined solely on the basis of a shared subnet address/mask - more sophisticated algorithms (e.g., the one used in the tcp btl) are required to handle routing via gateways
* the RML needs to assign sequence numbers to each message on a per-peer basis. The receiving RML will then deliver messages in order, thus preventing out-of-order messaging in the case where messages travel across different transports or a message needs to be redirected/resent due to failure of a NIC
This commit was SVN r29058.
2013-08-22 20:37:40 +04:00
|
|
|
#if OPAL_ENABLE_IPV6
|
2010-10-25 18:31:18 +04:00
|
|
|
case AF_INET6:
|
2007-05-17 05:17:59 +04:00
|
|
|
return ntohs(((struct sockaddr_in6*) addr)->sin6_port);
|
2010-10-25 17:56:23 +04:00
|
|
|
break;
|
2010-10-25 18:31:18 +04:00
|
|
|
#endif
|
2007-05-17 05:17:59 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
2007-05-30 19:25:22 +04:00
|
|
|
|
|
|
|
|
|
|
|
#else /* HAVE_STRUCT_SOCKADDR_IN */
|
|
|
|
|
2007-07-19 00:25:01 +04:00
|
|
|
int
|
|
|
|
opal_net_init()
|
|
|
|
{
|
|
|
|
return OPAL_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
opal_net_finalize()
|
|
|
|
{
|
|
|
|
return OPAL_SUCCESS;
|
|
|
|
}
|
|
|
|
|
2007-05-30 19:25:22 +04:00
|
|
|
|
|
|
|
uint32_t
|
|
|
|
opal_net_prefix2netmask(uint32_t prefixlen)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_islocalhost(const struct sockaddr *addr)
|
2007-05-30 19:25:22 +04:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
2015-06-24 06:59:57 +03:00
|
|
|
opal_net_samenetwork(const struct sockaddr *addr1,
|
2007-07-22 23:19:01 +04:00
|
|
|
const struct sockaddr *addr2,
|
2007-05-30 19:25:22 +04:00
|
|
|
uint32_t prefixlen)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_addr_isipv4public(const struct sockaddr *addr)
|
2007-05-30 19:25:22 +04:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char*
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_get_hostname(const struct sockaddr *addr)
|
2007-05-30 19:25:22 +04:00
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
2007-07-22 23:19:01 +04:00
|
|
|
opal_net_get_port(const struct sockaddr *addr)
|
2007-05-30 19:25:22 +04:00
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* HAVE_STRUCT_SOCKADDR_IN */
|