1
1
openmpi/opal/mca/btl/ugni/btl_ugni_send.c

200 строки
7.4 KiB
C
Исходник Обычный вид История

/* -*- Mode: C; c-basic-offset:3 ; indent-tabs-mode:nil -*- */
/*
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
* Copyright (c) 2011-2017 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2011 UT-Battelle, LLC. All rights reserved.
* Copyright (c) 2014 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* Copyright (c) 2017 Intel, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "btl_ugni.h"
#include "btl_ugni_frag.h"
#include "btl_ugni_smsg.h"
#include "btl_ugni_prepare.h"
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
void mca_btl_ugni_wait_list_append (mca_btl_ugni_module_t *ugni_module, mca_btl_base_endpoint_t *endpoint,
mca_btl_ugni_base_frag_t *frag)
{
BTL_VERBOSE(("wait-listing fragment %p to %s. endpoint state %d\n", (void*)frag, OPAL_NAME_PRINT(endpoint->peer_proc->proc_name), endpoint->state));
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
/* queue up request */
OPAL_THREAD_LOCK(&endpoint->lock);
opal_list_append (&endpoint->frag_wait_list, (opal_list_item_t *) frag);
OPAL_THREAD_UNLOCK(&endpoint->lock);
if (false == endpoint->wait_listed && MCA_BTL_UGNI_EP_STATE_CONNECTED == endpoint->state) {
OPAL_THREAD_LOCK(&ugni_module->ep_wait_list_lock);
if (false == endpoint->wait_listed) {
opal_list_append (&ugni_module->ep_wait_list, &endpoint->super);
endpoint->wait_listed = true;
}
OPAL_THREAD_UNLOCK(&ugni_module->ep_wait_list_lock);
}
}
int mca_btl_ugni_send (struct mca_btl_base_module_t *btl,
struct mca_btl_base_endpoint_t *endpoint,
struct mca_btl_base_descriptor_t *descriptor,
mca_btl_base_tag_t tag)
{
mca_btl_ugni_base_frag_t *frag = (mca_btl_ugni_base_frag_t *) descriptor;
size_t size = frag->segments[0].seg_len + frag->segments[1].seg_len;
mca_btl_ugni_module_t *ugni_module = (mca_btl_ugni_module_t *) btl;
int rc;
/* tag and len are at the same location in eager and smsg frag hdrs */
frag->hdr.send.lag = (tag << 24) | size;
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
BTL_VERBOSE(("btl/ugni sending descriptor %p from %d -> %d. length = %" PRIu64, (void *)descriptor,
OPAL_PROC_MY_NAME.vpid, endpoint->peer_proc->proc_name.vpid, size));
rc = mca_btl_ugni_check_endpoint_state (endpoint);
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
if (OPAL_UNLIKELY(OPAL_SUCCESS != rc || opal_list_get_size (&endpoint->frag_wait_list))) {
mca_btl_ugni_wait_list_append (ugni_module, endpoint, frag);
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
return OPAL_SUCCESS;
}
/* add a reference to prevent the fragment from being returned until after the
* completion flag is checked. */
++frag->ref_cnt;
frag->flags &= ~MCA_BTL_UGNI_FRAG_COMPLETE;
rc = mca_btl_ugni_send_frag (endpoint, frag);
if (OPAL_LIKELY(mca_btl_ugni_frag_check_complete (frag))) {
/* fast path: remote side has received the frag */
(void) mca_btl_ugni_frag_del_ref (frag, OPAL_SUCCESS);
return 1;
}
if ((OPAL_SUCCESS == rc) && (frag->flags & MCA_BTL_UGNI_FRAG_BUFFERED) && (frag->flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP)) {
/* fast(ish) path: btl owned buffered frag. report send as complete */
bool call_callback = !!(frag->flags & MCA_BTL_DES_SEND_ALWAYS_CALLBACK);
frag->flags &= ~MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
if (call_callback) {
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
frag->base.des_cbfunc(&ugni_module->super, frag->endpoint, &frag->base, rc);
}
(void) mca_btl_ugni_frag_del_ref (frag, OPAL_SUCCESS);
return 1;
}
/* slow(ish) path: remote side hasn't received the frag. call the frag's callback when
we get the local smsg/msgq or remote rdma completion */
frag->base.des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
mca_btl_ugni_frag_del_ref (frag, OPAL_SUCCESS);
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if (OPAL_UNLIKELY(OPAL_ERR_OUT_OF_RESOURCE == rc)) {
/* queue up request */
btl/ugni: improve multi-threaded performance This commit updates the ugni btl to make use of multiple device contexts to improve the multi-threaded RMA performance. This commit contains the following: - Cleanup the endpoint structure by removing unnecessary field. The structure now also contains all the fields originally handled by the common/ugni endpoint. - Clean up the fragment allocation code to remove the need to initialize the my_list member of the fragment structure. This member is not initialized by the free list initializer function. - Remove the (now unused) common/ugni component. btl/ugni no longer need the component. common/ugni was originally split out of btl/ugni to support bcol/ugni. As that component exists there is no reason to keep this component. - Create wrappers for the ugni functionality required by btl/ugni. This was done to ease supporting multiple device contexts. The wrappers are thread safe and currently use a spin lock instead of a mutex. This produces better performance when using multiple threads spread over multiple cores. In the future this lock may be replaced by another serialization mechanism. The wrappers are located in a new file: btl_ugni_device.h. - Remove unnecessary device locking from serial parts of the ugni btl. This includes the first add-procs and module finalize. - Clean up fragment wait list code by moving enqueue into common function. - Expose the communication domain flags as an MCA variable. The defaults have been updated to reflect the recommended setting for knl and haswell. - Avoid allocating fragments for communication with already overloaded peers. - Allocate RDMA endpoints dyncamically. This is needed to support spreading RMA operations accross multiple contexts. - Add support for spreading RMA communication over multiple ugni device contexts. This should greatly improve the threading performance when communicating with multiple peers. By default the number of virtual devices depends on 1) whether opal_using_threads() is set, 2) how many local processes are in the job, and 3) how many bits are available in the pid. The last is used to ensure that each CDM is created with a unique id. Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>
2017-03-12 22:37:35 -06:00
mca_btl_ugni_wait_list_append (ugni_module, endpoint, frag);
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
rc = OPAL_SUCCESS;
}
return rc;
}
int mca_btl_ugni_sendi (struct mca_btl_base_module_t *btl,
struct mca_btl_base_endpoint_t *endpoint,
struct opal_convertor_t *convertor,
void *header, size_t header_size,
size_t payload_size, uint8_t order,
uint32_t flags, mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t **descriptor)
{
size_t total_size = header_size + payload_size;
mca_btl_ugni_base_frag_t *frag = NULL;
size_t packed_size = payload_size;
int rc;
if (OPAL_UNLIKELY(opal_list_get_size (&endpoint->frag_wait_list))) {
if (NULL != descriptor) {
*descriptor = NULL;
}
return OPAL_ERR_OUT_OF_RESOURCE;
}
do {
BTL_VERBOSE(("btl/ugni isend sending fragment from %d -> %d. length = %" PRIu64
" endoint state %d", OPAL_PROC_MY_NAME.vpid, endpoint->peer_proc->proc_name.vpid,
payload_size + header_size, endpoint->state));
flags |= MCA_BTL_DES_FLAGS_BTL_OWNERSHIP;
if (0 == payload_size) {
frag = (mca_btl_ugni_base_frag_t *) mca_btl_ugni_prepare_src_send_nodata (btl, endpoint, order, header_size,
flags);
} else {
frag = (mca_btl_ugni_base_frag_t *) mca_btl_ugni_prepare_src_send_buffered (btl, endpoint, convertor, order,
header_size, &packed_size, flags);
}
assert (packed_size == payload_size);
if (OPAL_UNLIKELY(NULL == frag || OPAL_SUCCESS != mca_btl_ugni_check_endpoint_state (endpoint))) {
break;
}
frag->hdr.send.lag = (tag << 24) | total_size;
memcpy (frag->segments[0].seg_addr.pval, header, header_size);
rc = mca_btl_ugni_send_frag (endpoint, frag);
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if (OPAL_UNLIKELY(OPAL_SUCCESS != rc)) {
break;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
return OPAL_SUCCESS;
} while (0);
if (NULL != descriptor) {
*descriptor = &frag->base;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
return OPAL_ERR_OUT_OF_RESOURCE;
}
int mca_btl_ugni_progress_send_wait_list (mca_btl_base_endpoint_t *endpoint)
{
mca_btl_ugni_base_frag_t *frag=NULL;
int rc;
do {
OPAL_THREAD_LOCK(&endpoint->lock);
frag = (mca_btl_ugni_base_frag_t *) opal_list_remove_first (&endpoint->frag_wait_list);
OPAL_THREAD_UNLOCK(&endpoint->lock);
if (NULL == frag) {
break;
}
if (OPAL_LIKELY(!(frag->flags & MCA_BTL_UGNI_FRAG_RESPONSE))) {
rc = mca_btl_ugni_send_frag (endpoint, frag);
} else {
rc = opal_mca_btl_ugni_smsg_send (frag, &frag->hdr.rdma, sizeof (frag->hdr.rdma),
NULL, 0, MCA_BTL_UGNI_TAG_RDMA_COMPLETE);
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
if (OPAL_UNLIKELY(OPAL_SUCCESS > rc)) {
if (OPAL_LIKELY(OPAL_ERR_OUT_OF_RESOURCE == rc)) {
OPAL_THREAD_LOCK(&endpoint->lock);
opal_list_prepend (&endpoint->frag_wait_list, (opal_list_item_t *) frag);
OPAL_THREAD_UNLOCK(&endpoint->lock);
} else {
mca_btl_ugni_frag_complete (frag, rc);
}
return rc;
}
} while(1);
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 00:47:28 +00:00
return OPAL_SUCCESS;
}