1
1
openmpi/ompi/runtime/ompi_mpi_finalize.c

466 строки
16 KiB
C
Исходник Обычный вид История

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2011 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
2015-06-24 06:59:57 +03:00
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2015 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2006-2014 Los Alamos National Security, LLC. All rights
2015-06-24 06:59:57 +03:00
* reserved.
* Copyright (c) 2006 University of Houston. All rights reserved.
* Copyright (c) 2009 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2011 Sandia National Laboratories. All rights reserved.
* Copyright (c) 2014-2015 Intel, Inc. All rights reserved.
*
* $COPYRIGHT$
2015-06-24 06:59:57 +03:00
*
* Additional copyrights may follow
2015-06-24 06:59:57 +03:00
*
* $HEADER$
*/
#include "ompi_config.h"
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
#include "opal/mca/event/event.h"
#include "opal/util/output.h"
#include "opal/runtime/opal_progress.h"
#include "opal/mca/base/base.h"
#include "opal/sys/atomic.h"
#include "opal/runtime/opal.h"
#include "opal/util/show_help.h"
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 04:47:28 +04:00
#include "opal/mca/mpool/base/base.h"
#include "opal/mca/mpool/base/mpool_base_tree.h"
#include "opal/mca/rcache/base/base.h"
#include "opal/mca/allocator/base/base.h"
Per the PMIx RFC: WHAT: Merge the PMIx branch into the devel repo, creating a new OPAL “lmix” framework to abstract PMI support for all RTEs. Replace the ORTE daemon-level collectives with a new PMIx server and update the ORTE grpcomm framework to support server-to-server collectives WHY: We’ve had problems dealing with variations in PMI implementations, and need to extend the existing PMI definitions to meet exascale requirements. WHEN: Mon, Aug 25 WHERE: https://github.com/rhc54/ompi-svn-mirror.git Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding. All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level. Accordingly, we have: * created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations. * Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported. * Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint * removed the prior OMPI/OPAL modex code * added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform. * retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand This commit was SVN r32570.
2014-08-21 22:56:47 +04:00
#include "opal/mca/pmix/pmix.h"
#include "opal/util/timings.h"
#include "mpi.h"
#include "ompi/constants.h"
#include "ompi/errhandler/errcode.h"
#include "ompi/communicator/communicator.h"
#include "ompi/datatype/ompi_datatype.h"
#include "ompi/message/message.h"
#include "ompi/op/op.h"
#include "ompi/file/file.h"
#include "ompi/info/info.h"
#include "ompi/runtime/mpiruntime.h"
#include "ompi/attribute/attribute.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/mca/bml/bml.h"
#include "ompi/mca/pml/base/base.h"
#include "ompi/mca/bml/base/base.h"
#include "ompi/mca/osc/base/base.h"
#include "ompi/mca/coll/base/base.h"
#include "ompi/mca/rte/rte.h"
#include "ompi/mca/rte/base/base.h"
#include "ompi/mca/topo/base/base.h"
#include "ompi/mca/io/io.h"
#include "ompi/mca/io/base/base.h"
#include "ompi/mca/pml/base/pml_base_bsend.h"
#include "ompi/runtime/params.h"
#include "ompi/dpm/dpm.h"
#include "ompi/mpiext/mpiext.h"
#if OPAL_ENABLE_FT_CR == 1
#include "ompi/mca/crcp/crcp.h"
#include "ompi/mca/crcp/base/base.h"
#endif
#include "ompi/runtime/ompi_cr.h"
MCA/base: Add new MCA variable system Features: - Support for an override parameter file (openmpi-mca-param-override.conf). Variable values in this file can not be overridden by any file or environment value. - Support for boolean, unsigned, and unsigned long long variables. - Support for true/false values. - Support for enumerations on integer variables. - Support for MPIT scope, verbosity, and binding. - Support for command line source. - Support for setting variable source via the environment using OMPI_MCA_SOURCE_<var name>=source (either command or file:filename) - Cleaner API. - Support for variable groups (equivalent to MPIT categories). Notes: - Variables must be created with a backing store (char **, int *, or bool *) that must live at least as long as the variable. - Creating a variable with the MCA_BASE_VAR_FLAG_SETTABLE enables the use of mca_base_var_set_value() to change the value. - String values are duplicated when the variable is registered. It is up to the caller to free the original value if necessary. The new value will be freed by the mca_base_var system and must not be freed by the user. - Variables with constant scope may not be settable. - Variable groups (and all associated variables) are deregistered when the component is closed or the component repository item is freed. This prevents a segmentation fault from accessing a variable after its component is unloaded. - After some discussion we decided we should remove the automatic registration of component priority variables. Few component actually made use of this feature. - The enumerator interface was updated to be general enough to handle future uses of the interface. - The code to generate ompi_info output has been moved into the MCA variable system. See mca_base_var_dump(). opal: update core and components to mca_base_var system orte: update core and components to mca_base_var system ompi: update core and components to mca_base_var system This commit also modifies the rmaps framework. The following variables were moved from ppr and lama: rmaps_base_pernode, rmaps_base_n_pernode, rmaps_base_n_persocket. Both lama and ppr create synonyms for these variables. This commit was SVN r28236.
2013-03-28 01:09:41 +04:00
extern bool ompi_enable_timing;
extern bool ompi_enable_timing_ext;
int ompi_mpi_finalize(void)
{
int ret = MPI_SUCCESS;
opal_list_item_t *item;
ompi_proc_t** procs;
size_t nprocs;
OPAL_TIMING_DECLARE(tm);
OPAL_TIMING_INIT_EXT(&tm, OPAL_TIMING_GET_TIME_OF_DAY);
/* Be a bit social if an erroneous program calls MPI_FINALIZE in
two different threads, otherwise we may deadlock in
ompi_comm_free() (or run into other nasty lions, tigers, or
bears).
This lock is held for the duration of ompi_mpi_init() and
ompi_mpi_finalize(). Hence, if we get it, then no other thread
is inside the critical section (and we don't have to check the
*_started bool variables). */
opal_mutex_lock(&ompi_mpi_bootstrap_mutex);
if (!ompi_mpi_initialized || ompi_mpi_finalized) {
/* Note that if we're not initialized or already finalized, we
cannot raise an MPI exception. The best that we can do is
write something to stderr. */
char hostname[MAXHOSTNAMELEN];
pid_t pid = getpid();
gethostname(hostname, sizeof(hostname));
if (ompi_mpi_initialized) {
opal_show_help("help-mpi-runtime.txt",
"mpi_finalize: not initialized",
true, hostname, pid);
} else if (ompi_mpi_finalized) {
opal_show_help("help-mpi-runtime.txt",
"mpi_finalize:invoked_multiple_times",
true, hostname, pid);
}
opal_mutex_unlock(&ompi_mpi_bootstrap_mutex);
return MPI_ERR_OTHER;
}
ompi_mpi_finalize_started = true;
ompi_mpiext_fini();
/* Per MPI-2:4.8, we have to free MPI_COMM_SELF before doing
anything else in MPI_FINALIZE (to include setting up such that
MPI_FINALIZED will return true). */
if (NULL != ompi_mpi_comm_self.comm.c_keyhash) {
ompi_attr_delete_all(COMM_ATTR, &ompi_mpi_comm_self,
ompi_mpi_comm_self.comm.c_keyhash);
OBJ_RELEASE(ompi_mpi_comm_self.comm.c_keyhash);
ompi_mpi_comm_self.comm.c_keyhash = NULL;
}
/* Proceed with MPI_FINALIZE */
ompi_mpi_finalized = true;
/* As finalize is the last legal MPI call, we are allowed to force the release
* of the user buffer used for bsend, before going anywhere further.
*/
(void)mca_pml_base_bsend_detach(NULL, NULL);
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 04:47:28 +04:00
#if OPAL_ENABLE_PROGRESS_THREADS == 0
opal_progress_set_event_flag(OPAL_EVLOOP_ONCE | OPAL_EVLOOP_NONBLOCK);
#endif
/* Redo ORTE calling opal_progress_event_users_increment() during
MPI lifetime, to get better latency when not using TCP */
opal_progress_event_users_increment();
/* check to see if we want timing information */
OPAL_TIMING_MSTART((&tm,"time to execute finalize barrier"));
/* NOTE: MPI-2.1 requires that MPI_FINALIZE is "collective" across
*all* connected processes. This only means that all processes
have to call it. It does *not* mean that all connected
2015-06-24 06:59:57 +03:00
processes need to synchronize (either directly or indirectly).
For example, it is quite easy to construct complicated
scenarios where one job is "connected" to another job via
transitivity, but have no direct knowledge of each other.
Consider the following case: job A spawns job B, and job B
later spawns job C. A "connectedness" graph looks something
like this:
A <--> B <--> C
So what are we *supposed* to do in this case? If job A is
still connected to B when it calls FINALIZE, should it block
until jobs B and C also call FINALIZE?
After lengthy discussions many times over the course of this
project, the issue was finally decided at the Louisville Feb
2009 meeting: no.
Rationale:
- "Collective" does not mean synchronizing. It only means that
every process call it. Hence, in this scenario, every
process in A, B, and C must call FINALIZE.
- KEY POINT: if A calls FINALIZE, then it is erroneous for B or
C to try to communicate with A again.
- Hence, OMPI is *correct* to only effect a barrier across each
jobs' MPI_COMM_WORLD before exiting. Specifically, if A
calls FINALIZE long before B or C, it's *correct* if A exits
at any time (and doesn't notify B or C that it is exiting).
- Arguably, if B or C do try to communicate with the now-gone
A, OMPI should try to print a nice error ("you tried to
communicate with a job that is already gone...") instead of
segv or other Badness. However, that is an *extremely*
difficult problem -- sure, it's easy for A to tell B that it
is finalizing, but how can A tell C? A doesn't even know
about C. You'd need to construct a "connected" graph in a
distributed fashion, which is fraught with race conditions,
etc.
Hence, our conclusion is: OMPI is *correct* in its current
behavior (of only doing a barrier across its own COMM_WORLD)
before exiting. Any problems that occur are as a result of
erroneous MPI applications. We *could* tighten up the erroneous
cases and ensure that we print nice error messages / don't
crash, but that is such a difficult problem that we decided we
have many other, much higher priority issues to handle that deal
with non-erroneous cases. */
/* Wait for everyone to reach this point. This is a grpcomm
barrier instead of an MPI barrier for (at least) two reasons:
1. An MPI barrier doesn't ensure that all messages have been
transmitted before exiting (e.g., a BTL can lie and buffer a
message without actually injecting it to the network, and
therefore require further calls to that BTL's progress), so
the possibility of a stranded message exists.
2. If the MPI communication is using an unreliable transport,
there's a problem of knowing that everyone has *left* the
barrier. E.g., one proc can send its ACK to the barrier
message to a peer and then leave the barrier, but the ACK
can get lost and therefore the peer is left in the barrier.
Point #1 has been known for a long time; point #2 emerged after
we added the first unreliable BTL to Open MPI and fixed the
del_procs behavior around May of 2014 (see
https://svn.open-mpi.org/trac/ompi/ticket/4669#comment:4 for
more details). */
Per the PMIx RFC: WHAT: Merge the PMIx branch into the devel repo, creating a new OPAL “lmix” framework to abstract PMI support for all RTEs. Replace the ORTE daemon-level collectives with a new PMIx server and update the ORTE grpcomm framework to support server-to-server collectives WHY: We’ve had problems dealing with variations in PMI implementations, and need to extend the existing PMI definitions to meet exascale requirements. WHEN: Mon, Aug 25 WHERE: https://github.com/rhc54/ompi-svn-mirror.git Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding. All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level. Accordingly, we have: * created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations. * Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported. * Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint * removed the prior OMPI/OPAL modex code * added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform. * retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand This commit was SVN r32570.
2014-08-21 22:56:47 +04:00
opal_pmix.fence(NULL, 0);
/* check for timing request - get stop time and report elapsed
time if so */
OPAL_TIMING_MSTOP(&tm);
OPAL_TIMING_DELTAS(ompi_enable_timing, &tm);
OPAL_TIMING_REPORT(ompi_enable_timing_ext, &tm);
OPAL_TIMING_RELEASE(&tm);
/*
* Shutdown the Checkpoint/Restart Mech.
*/
if (OMPI_SUCCESS != (ret = ompi_cr_finalize())) {
OMPI_ERROR_LOG(ret);
}
/* Shut down any bindings-specific issues: C++, F77, F90 */
/* Remove all memory associated by MPI_REGISTER_DATAREP (per
MPI-2:9.5.3, there is no way for an MPI application to
*un*register datareps, but we don't want the OMPI layer causing
memory leaks). */
while (NULL != (item = opal_list_remove_first(&ompi_registered_datareps))) {
OBJ_RELEASE(item);
}
OBJ_DESTRUCT(&ompi_registered_datareps);
/* Remove all F90 types from the hash tables. As the OBJ_DESTRUCT will
* call a special destructor able to release predefined types, we can
* simply call the OBJ_DESTRUCT on the hash table and all memory will
* be correctly released.
*/
OBJ_DESTRUCT( &ompi_mpi_f90_integer_hashtable );
OBJ_DESTRUCT( &ompi_mpi_f90_real_hashtable );
OBJ_DESTRUCT( &ompi_mpi_f90_complex_hashtable );
/* Free communication objects */
/* free file resources */
if (OMPI_SUCCESS != (ret = ompi_file_finalize())) {
goto done;
}
/* free window resources */
if (OMPI_SUCCESS != (ret = ompi_win_finalize())) {
goto done;
}
if (OMPI_SUCCESS != (ret = ompi_osc_base_finalize())) {
goto done;
}
/* free communicator resources. this MUST come before finalizing the PML
* as this will call into the pml */
if (OMPI_SUCCESS != (ret = ompi_comm_finalize())) {
goto done;
}
/* call del_procs on all allocated procs even though some may not be known
* to the pml layer. the pml layer is expected to be resilient and ignore
* any unknown procs. */
nprocs = 0;
procs = ompi_proc_get_allocated (&nprocs);
MCA_PML_CALL(del_procs(procs, nprocs));
free(procs);
2015-06-24 06:59:57 +03:00
/* free pml resource */
if(OMPI_SUCCESS != (ret = mca_pml_base_finalize())) {
goto done;
}
/* free requests */
if (OMPI_SUCCESS != (ret = ompi_request_finalize())) {
goto done;
}
if (OMPI_SUCCESS != (ret = ompi_message_finalize())) {
goto done;
}
/* If requested, print out a list of memory allocated by ALLOC_MEM
but not freed by FREE_MEM */
if (0 != ompi_debug_show_mpi_alloc_mem_leaks) {
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 04:47:28 +04:00
mca_mpool_base_tree_print(ompi_debug_show_mpi_alloc_mem_leaks);
}
/* Now that all MPI objects dealing with communications are gone,
shut down MCA types having to do with communications */
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&ompi_pml_base_framework) ) ) {
OMPI_ERROR_LOG(ret);
goto done;
}
/* shut down buffered send code */
mca_pml_base_bsend_fini();
#if OPAL_ENABLE_FT_CR == 1
/*
* Shutdown the CRCP Framework, must happen after PML shutdown
*/
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&ompi_crcp_base_framework) ) ) {
OMPI_ERROR_LOG(ret);
goto done;
}
#endif
/* Free secondary resources */
/* free attr resources */
if (OMPI_SUCCESS != (ret = ompi_attr_finalize())) {
goto done;
}
/* free group resources */
if (OMPI_SUCCESS != (ret = ompi_group_finalize())) {
goto done;
}
/* finalize the DPM subsystem */
if ( OMPI_SUCCESS != (ret = ompi_dpm_finalize())) {
goto done;
}
2015-06-24 06:59:57 +03:00
/* free internal error resources */
if (OMPI_SUCCESS != (ret = ompi_errcode_intern_finalize())) {
goto done;
}
2015-06-24 06:59:57 +03:00
/* free error code resources */
if (OMPI_SUCCESS != (ret = ompi_mpi_errcode_finalize())) {
goto done;
}
/* free errhandler resources */
if (OMPI_SUCCESS != (ret = ompi_errhandler_finalize())) {
goto done;
}
/* Free all other resources */
/* free op resources */
if (OMPI_SUCCESS != (ret = ompi_op_finalize())) {
goto done;
}
/* free ddt resources */
if (OMPI_SUCCESS != (ret = ompi_datatype_finalize())) {
goto done;
}
/* free info resources */
if (OMPI_SUCCESS != (ret = ompi_info_finalize())) {
goto done;
}
/* Close down MCA modules */
/* io is opened lazily, so it's only necessary to close it if it
was actually opened */
if (0 < ompi_io_base_framework.framework_refcnt) {
/* May have been "opened" multiple times. We want it closed now */
ompi_io_base_framework.framework_refcnt = 1;
if (OMPI_SUCCESS != mca_base_framework_close(&ompi_io_base_framework)) {
goto done;
}
}
(void) mca_base_framework_close(&ompi_topo_base_framework);
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&ompi_osc_base_framework))) {
goto done;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&ompi_coll_base_framework))) {
goto done;
}
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&ompi_bml_base_framework))) {
goto done;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 04:47:28 +04:00
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&opal_mpool_base_framework))) {
goto done;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 04:47:28 +04:00
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&opal_rcache_base_framework))) {
goto done;
}
George did the work and deserves all the credit for it. Ralph did the merge, and deserves whatever blame results from errors in it :-) WHAT: Open our low-level communication infrastructure by moving all necessary components (btl/rcache/allocator/mpool) down in OPAL All the components required for inter-process communications are currently deeply integrated in the OMPI layer. Several groups/institutions have express interest in having a more generic communication infrastructure, without all the OMPI layer dependencies. This communication layer should be made available at a different software level, available to all layers in the Open MPI software stack. As an example, our ORTE layer could replace the current OOB and instead use the BTL directly, gaining access to more reactive network interfaces than TCP. Similarly, external software libraries could take advantage of our highly optimized AM (active message) communication layer for their own purpose. UTK with support from Sandia, developped a version of Open MPI where the entire communication infrastucture has been moved down to OPAL (btl/rcache/allocator/mpool). Most of the moved components have been updated to match the new schema, with few exceptions (mainly BTLs where I have no way of compiling/testing them). Thus, the completion of this RFC is tied to being able to completing this move for all BTLs. For this we need help from the rest of the Open MPI community, especially those supporting some of the BTLs. A non-exhaustive list of BTLs that qualify here is: mx, portals4, scif, udapl, ugni, usnic. This commit was SVN r32317.
2014-07-26 04:47:28 +04:00
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&opal_allocator_base_framework))) {
goto done;
}
/* free proc resources */
if ( OMPI_SUCCESS != (ret = ompi_proc_finalize())) {
goto done;
}
if (NULL != ompi_mpi_main_thread) {
OBJ_RELEASE(ompi_mpi_main_thread);
ompi_mpi_main_thread = NULL;
}
/* Clean up memory/resources from the MPI dynamic process
functionality checker */
ompi_mpi_dynamics_finalize();
/* Leave the RTE */
if (OMPI_SUCCESS != (ret = ompi_rte_finalize())) {
goto done;
}
When we abort during MPI_Init, we currently emit a totally incorrect error message stating that we were unable to aggregate error messages and cannot guarantee all other processes were killed. This simply isn't true IF the rte has been initialized. So track that the rte has reached that point, and only emit the new message if it is accurate. Note that we still generate a TON of output for a minor error: Ralphs-iMac:examples rhc$ mpirun -n 3 -mca btl sm ./hello_c -------------------------------------------------------------------------- At least one pair of MPI processes are unable to reach each other for MPI communications. This means that no Open MPI device has indicated that it can be used to communicate between these processes. This is an error; Open MPI requires that all MPI processes be able to reach each other. This error can sometimes be the result of forgetting to specify the "self" BTL. Process 1 ([[50239,1],2]) is on host: Ralphs-iMac Process 2 ([[50239,1],2]) is on host: Ralphs-iMac BTLs attempted: sm Your MPI job is now going to abort; sorry. -------------------------------------------------------------------------- *** An error occurred in MPI_Init *** on a NULL communicator *** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort, *** and potentially your MPI job) *** An error occurred in MPI_Init *** on a NULL communicator *** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort, *** and potentially your MPI job) *** An error occurred in MPI_Init *** on a NULL communicator *** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort, *** and potentially your MPI job) -------------------------------------------------------------------------- MPI_INIT has failed because at least one MPI process is unreachable from another. This *usually* means that an underlying communication plugin -- such as a BTL or an MTL -- has either not loaded or not allowed itself to be used. Your MPI job will now abort. You may wish to try to narrow down the problem; * Check the output of ompi_info to see which BTL/MTL plugins are available. * Run your application with MPI_THREAD_SINGLE. * Set the MCA parameter btl_base_verbose to 100 (or mtl_base_verbose, if using MTL-based communications) to see exactly which communication plugins were considered and/or discarded. -------------------------------------------------------------------------- ------------------------------------------------------- Primary job terminated normally, but 1 process returned a non-zero exit code.. Per user-direction, the job has been aborted. ------------------------------------------------------- -------------------------------------------------------------------------- mpirun detected that one or more processes exited with non-zero status, thus causing the job to be terminated. The first process to do so was: Process name: [[50239,1],2] Exit code: 1 -------------------------------------------------------------------------- [Ralphs-iMac.local:23227] 2 more processes have sent help message help-mca-bml-r2.txt / unreachable proc [Ralphs-iMac.local:23227] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help / error messages [Ralphs-iMac.local:23227] 2 more processes have sent help message help-mpi-runtime / mpi_init:startup:pml-add-procs-fail Ralphs-iMac:examples rhc$ Hopefully, we can agree on a way to reduce this verbage! This commit was SVN r31686. The following SVN revision numbers were found above: r2 --> open-mpi/ompi@58fdc188553052bc2e893ba28fb28fddbe78435a
2014-05-08 19:48:16 +04:00
ompi_rte_initialized = false;
/* now close the rte framework */
if (OMPI_SUCCESS != (ret = mca_base_framework_close(&ompi_rte_base_framework) ) ) {
OMPI_ERROR_LOG(ret);
goto done;
}
if (OPAL_SUCCESS != (ret = opal_finalize_util())) {
goto done;
}
/* All done */
done:
opal_mutex_unlock(&ompi_mpi_bootstrap_mutex);
return ret;
}