1
1
openmpi/ompi/mca/btl/openib/btl_openib_eager_rdma.h

103 строки
3.8 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2006-2007 Voltaire All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#ifndef MCA_BTL_OPENIB_EAGER_RDMA_BUF_H
#define MCA_BTL_OPENIB_EAGER_RDMA_BUF_H
#include "ompi_config.h"
#include "btl_openib.h"
#if defined(c_plusplus) || defined(__cplusplus)
extern "C" {
#endif
struct mca_btl_openib_eager_rdma_local_t {
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
ompi_ptr_t base; /**< buffer for RDMAing eager messages */
mca_btl_openib_recv_frag_t *frags;
mca_btl_openib_reg_t *reg;
uint16_t head; /**< RDMA buffer to poll */
uint16_t tail; /**< Needed for credit managment */
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
int32_t credits; /**< number of RDMA credits */
int32_t rd_win;
#if OMPI_ENABLE_DEBUG
uint32_t seq;
#endif
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 01:15:59 +00:00
opal_mutex_t lock; /**< guard access to RDMA buffer */
int32_t rd_low;
};
typedef struct mca_btl_openib_eager_rdma_local_t mca_btl_openib_eager_rdma_local_t;
struct mca_btl_openib_eager_rdma_remote_t {
ompi_ptr_t base; /**< address of remote buffer */
uint32_t rkey; /**< RKey for accessing remote buffer */
int32_t head; /**< RDMA buffer to post to */
int32_t tokens; /**< number of rdam tokens */
#if OMPI_ENABLE_DEBUG
uint32_t seq;
#endif
};
typedef struct mca_btl_openib_eager_rdma_remote_t mca_btl_openib_eager_rdma_remote_t;
#define MCA_BTL_OPENIB_RDMA_FRAG(F) \
(openib_frag_type(F) == MCA_BTL_OPENIB_FRAG_EAGER_RDMA)
#define EAGER_RDMA_BUFFER_REMOTE (0)
#define EAGER_RDMA_BUFFER_LOCAL (0xff)
#ifdef WORDS_BIGENDIAN
#define MCA_BTL_OPENIB_RDMA_FRAG_GET_SIZE(F) ((F)->u.size >> 8)
#define MCA_BTL_OPENIB_RDMA_FRAG_SET_SIZE(F, S) \
((F)->u.size = (S) << 8)
#else
#define MCA_BTL_OPENIB_RDMA_FRAG_GET_SIZE(F) ((F)->u.size & 0x00ffffff)
#define MCA_BTL_OPENIB_RDMA_FRAG_SET_SIZE(F, S) \
((F)->u.size = (S) & 0x00ffffff)
#endif
#define MCA_BTL_OPENIB_RDMA_FRAG_LOCAL(F) \
(((volatile uint8_t*)(F)->ftr->u.buf)[3] != EAGER_RDMA_BUFFER_REMOTE)
#define MCA_BTL_OPENIB_RDMA_FRAG_REMOTE(F) \
(!MCA_BTL_OPENIB_RDMA_FRAG_LOCAL(F))
#define MCA_BTL_OPENIB_RDMA_MAKE_REMOTE(F) do { \
((volatile uint8_t*)(F)->u.buf)[3] = EAGER_RDMA_BUFFER_REMOTE; \
}while (0)
#define MCA_BTL_OPENIB_RDMA_MAKE_LOCAL(F) do { \
((volatile uint8_t*)(F)->u.buf)[3] = EAGER_RDMA_BUFFER_LOCAL; \
}while (0)
#define MCA_BTL_OPENIB_GET_LOCAL_RDMA_FRAG(E, I) \
(&(E)->eager_rdma_local.frags[(I)])
#define MCA_BTL_OPENIB_RDMA_NEXT_INDEX(I) do { \
(I) = ((I) + 1); \
if((I) == \
mca_btl_openib_component.eager_rdma_num) \
(I) = 0; \
} while (0)
#define MCA_BTL_OPENIB_RDMA_MOVE_INDEX(HEAD, OLD_HEAD) \
do { \
int32_t new_head; \
do { \
OLD_HEAD = HEAD; \
new_head = OLD_HEAD + 1; \
if(new_head == mca_btl_openib_component.eager_rdma_num) \
new_head = 0; \
} while(!OPAL_ATOMIC_CMPSET_32(&HEAD, OLD_HEAD, new_head)); \
} while(0)
#if defined(c_plusplus) || defined(__cplusplus)
}
#endif
#endif