1
1
openmpi/orte/mca/ess/singleton/ess_singleton_module.c

799 строки
29 KiB
C
Исходник Обычный вид История

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2011 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
2015-06-23 20:59:57 -07:00
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
2015-06-23 20:59:57 -07:00
* Copyright (c) 2010 Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2013-2018 Intel, Inc. All rights reserved.
* Copyright (c) 2015 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2016-2017 Research Organization for Information Science
* and Technology (RIST). All rights reserved.
* $COPYRIGHT$
2015-06-23 20:59:57 -07:00
*
* Additional copyrights may follow
2015-06-23 20:59:57 -07:00
*
* $HEADER$
*
*/
#include "orte_config.h"
#include "orte/constants.h"
#include <string.h>
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <signal.h>
#include <errno.h>
#include "opal/hash_string.h"
#include "opal/util/arch.h"
#include "opal/util/argv.h"
2015-09-16 00:58:05 -07:00
#include "opal/util/opal_environ.h"
#include "opal/util/path.h"
#include "opal/util/timings.h"
2016-03-08 10:33:15 -08:00
#include "opal/runtime/opal_progress_threads.h"
#include "opal/mca/installdirs/installdirs.h"
Per the PMIx RFC: WHAT: Merge the PMIx branch into the devel repo, creating a new OPAL “lmix” framework to abstract PMI support for all RTEs. Replace the ORTE daemon-level collectives with a new PMIx server and update the ORTE grpcomm framework to support server-to-server collectives WHY: We’ve had problems dealing with variations in PMI implementations, and need to extend the existing PMI definitions to meet exascale requirements. WHEN: Mon, Aug 25 WHERE: https://github.com/rhc54/ompi-svn-mirror.git Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding. All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level. Accordingly, we have: * created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations. * Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported. * Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint * removed the prior OMPI/OPAL modex code * added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform. * retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand This commit was SVN r32570.
2014-08-21 18:56:47 +00:00
#include "opal/mca/pmix/base/base.h"
#include "opal/mca/pmix/pmix.h"
#include "orte/util/show_help.h"
#include "orte/util/proc_info.h"
#include "orte/mca/errmgr/base/base.h"
#include "orte/mca/filem/base/base.h"
#include "orte/mca/plm/base/base.h"
#include "orte/mca/rml/base/rml_contact.h"
#include "orte/mca/state/base/base.h"
#include "orte/util/name_fns.h"
#include "orte/runtime/orte_globals.h"
#include "orte/util/session_dir.h"
#include "orte/util/pre_condition_transports.h"
#include "orte/mca/ess/ess.h"
#include "orte/mca/ess/base/base.h"
#include "orte/mca/ess/singleton/ess_singleton.h"
static int rte_init(void);
static int rte_finalize(void);
static void rte_abort(int status, bool report);
orte_ess_base_module_t orte_ess_singleton_module = {
rte_init,
rte_finalize,
rte_abort,
NULL /* ft_event */
};
extern char *orte_ess_singleton_server_uri;
static bool added_transport_keys=false;
static bool added_num_procs = false;
static bool added_app_ctx = false;
static bool added_pmix_envs = false;
2016-03-08 10:33:15 -08:00
static bool progress_thread_running = false;
static int fork_hnp(void);
static int rte_init(void)
{
int rc, ret;
char *error = NULL;
int u32, *u32ptr;
uint16_t u16, *u16ptr;
orte_process_name_t name;
/* run the prolog */
if (ORTE_SUCCESS != (rc = orte_ess_base_std_prolog())) {
ORTE_ERROR_LOG(rc);
return rc;
}
u32ptr = &u32;
u16ptr = &u16;
if (NULL != mca_ess_singleton_component.server_uri) {
/* we are going to connect to a server HNP */
if (0 == strncmp(mca_ess_singleton_component.server_uri, "file", strlen("file")) ||
0 == strncmp(mca_ess_singleton_component.server_uri, "FILE", strlen("FILE"))) {
char input[1024], *filename;
FILE *fp;
2015-06-23 20:59:57 -07:00
/* it is a file - get the filename */
filename = strchr(mca_ess_singleton_component.server_uri, ':');
if (NULL == filename) {
/* filename is not correctly formatted */
orte_show_help("help-orterun.txt", "orterun:ompi-server-filename-bad", true,
"singleton", mca_ess_singleton_component.server_uri);
return ORTE_ERROR;
}
++filename; /* space past the : */
2015-06-23 20:59:57 -07:00
if (0 >= strlen(filename)) {
/* they forgot to give us the name! */
orte_show_help("help-orterun.txt", "orterun:ompi-server-filename-missing", true,
"singleton", mca_ess_singleton_component.server_uri);
return ORTE_ERROR;
}
2015-06-23 20:59:57 -07:00
/* open the file and extract the uri */
fp = fopen(filename, "r");
if (NULL == fp) { /* can't find or read file! */
orte_show_help("help-orterun.txt", "orterun:ompi-server-filename-access", true,
"singleton", mca_ess_singleton_component.server_uri);
return ORTE_ERROR;
}
memset(input, 0, 1024); // initialize the array to ensure a NULL termination
if (NULL == fgets(input, 1023, fp)) {
/* something malformed about file */
fclose(fp);
orte_show_help("help-orterun.txt", "orterun:ompi-server-file-bad", true,
"singleton", mca_ess_singleton_component.server_uri, "singleton");
return ORTE_ERROR;
}
fclose(fp);
input[strlen(input)-1] = '\0'; /* remove newline */
orte_process_info.my_hnp_uri = strdup(input);
} else {
orte_process_info.my_hnp_uri = strdup(mca_ess_singleton_component.server_uri);
}
/* save the daemon uri - we will process it later */
orte_process_info.my_daemon_uri = strdup(orte_process_info.my_hnp_uri);
/* construct our name - we are in their job family, so we know that
* much. However, we cannot know how many other singletons and jobs
* this HNP is running. Oh well - if someone really wants to use this
* option, they can try to figure it out. For now, we'll just assume
* we are the only ones */
ORTE_PROC_MY_NAME->jobid = ORTE_CONSTRUCT_LOCAL_JOBID(ORTE_PROC_MY_HNP->jobid, 1);
/* obviously, we are vpid=0 for this job */
ORTE_PROC_MY_NAME->vpid = 0;
/* for convenience, push the pubsub version of this param into the environ */
opal_setenv (OPAL_MCA_PREFIX"pubsub_orte_server", orte_process_info.my_hnp_uri, true, &environ);
} else if (NULL != getenv("SINGULARITY_CONTAINER") ||
mca_ess_singleton_component.isolated) {
/* ensure we use the isolated pmix component */
opal_setenv(OPAL_MCA_PREFIX"pmix", "isolated", true, &environ);
} else {
/* we want to use PMIX_NAMESPACE that will be sent by the hnp as a jobid */
opal_setenv(OPAL_MCA_PREFIX"orte_launch", "1", true, &environ);
/* spawn our very own HNP to support us */
if (ORTE_SUCCESS != (rc = fork_hnp())) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* our name was given to us by the HNP */
opal_setenv(OPAL_MCA_PREFIX"pmix", "^s1,s2,cray,isolated", true, &environ);
}
2016-03-08 10:33:15 -08:00
/* get an async event base - we use the opal_async one so
* we don't startup extra threads if not needed */
orte_event_base = opal_progress_thread_init(NULL);
progress_thread_running = true;
/* open and setup pmix */
2016-03-08 10:33:15 -08:00
if (OPAL_SUCCESS != (ret = mca_base_framework_open(&opal_pmix_base_framework, 0))) {
error = "opening pmix";
goto error;
}
if (OPAL_SUCCESS != (ret = opal_pmix_base_select())) {
error = "select pmix";
goto error;
}
2016-03-08 10:33:15 -08:00
/* set the event base */
opal_pmix_base_set_evbase(orte_event_base);
/* initialize the selected module */
if (!opal_pmix.initialized() && (OPAL_SUCCESS != (ret = opal_pmix.init(NULL)))) {
2016-03-08 10:33:15 -08:00
/* we cannot run */
error = "pmix init";
goto error;
}
/* pmix.init set our process name down in the OPAL layer,
* so carry it forward here */
ORTE_PROC_MY_NAME->jobid = OPAL_PROC_MY_NAME.jobid;
ORTE_PROC_MY_NAME->vpid = OPAL_PROC_MY_NAME.vpid;
name.jobid = OPAL_PROC_MY_NAME.jobid;
name.vpid = ORTE_VPID_WILDCARD;
/* get our local rank from PMI */
OPAL_MODEX_RECV_VALUE(ret, OPAL_PMIX_LOCAL_RANK,
ORTE_PROC_MY_NAME, &u16ptr, OPAL_UINT16);
if (OPAL_SUCCESS != ret) {
error = "getting local rank";
goto error;
}
orte_process_info.my_local_rank = u16;
/* get our node rank from PMI */
OPAL_MODEX_RECV_VALUE(ret, OPAL_PMIX_NODE_RANK,
ORTE_PROC_MY_NAME, &u16ptr, OPAL_UINT16);
if (OPAL_SUCCESS != ret) {
error = "getting node rank";
goto error;
}
orte_process_info.my_node_rank = u16;
/* get max procs */
OPAL_MODEX_RECV_VALUE(ret, OPAL_PMIX_MAX_PROCS,
&name, &u32ptr, OPAL_UINT32);
if (OPAL_SUCCESS != ret) {
error = "getting max procs";
goto error;
}
orte_process_info.max_procs = u32;
/* we are a singleton, so there is only one proc in the job */
orte_process_info.num_procs = 1;
/* push into the environ for pickup in MPI layer for
* MPI-3 required info key
*/
if (NULL == getenv(OPAL_MCA_PREFIX"orte_ess_num_procs")) {
char * num_procs;
asprintf(&num_procs, "%d", orte_process_info.num_procs);
opal_setenv(OPAL_MCA_PREFIX"orte_ess_num_procs", num_procs, true, &environ);
free(num_procs);
added_num_procs = true;
}
if (NULL == getenv("OMPI_APP_CTX_NUM_PROCS")) {
char * num_procs;
asprintf(&num_procs, "%d", orte_process_info.num_procs);
opal_setenv("OMPI_APP_CTX_NUM_PROCS", num_procs, true, &environ);
free(num_procs);
added_app_ctx = true;
}
/* get our app number from PMI - ok if not found */
OPAL_MODEX_RECV_VALUE_OPTIONAL(ret, OPAL_PMIX_APPNUM,
ORTE_PROC_MY_NAME, &u32ptr, OPAL_UINT32);
if (OPAL_SUCCESS == ret) {
orte_process_info.app_num = u32;
} else {
orte_process_info.app_num = 0;
Per the PMIx RFC: WHAT: Merge the PMIx branch into the devel repo, creating a new OPAL “lmix” framework to abstract PMI support for all RTEs. Replace the ORTE daemon-level collectives with a new PMIx server and update the ORTE grpcomm framework to support server-to-server collectives WHY: We’ve had problems dealing with variations in PMI implementations, and need to extend the existing PMI definitions to meet exascale requirements. WHEN: Mon, Aug 25 WHERE: https://github.com/rhc54/ompi-svn-mirror.git Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding. All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level. Accordingly, we have: * created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations. * Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported. * Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint * removed the prior OMPI/OPAL modex code * added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform. * retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand This commit was SVN r32570.
2014-08-21 18:56:47 +00:00
}
/* set some other standard values */
orte_process_info.num_local_peers = 0;
/* setup transport keys in case the MPI layer needs them -
* we can use the jobfam and stepid as unique keys
* because they are unique values assigned by the RM
*/
if (NULL == getenv(OPAL_MCA_PREFIX"orte_precondition_transports")) {
char *key;
ret = orte_pre_condition_transports(NULL, &key);
if (ORTE_SUCCESS == ret) {
opal_setenv(OPAL_MCA_PREFIX"orte_precondition_transports", key, true, &environ);
free(key);
}
Per the PMIx RFC: WHAT: Merge the PMIx branch into the devel repo, creating a new OPAL “lmix” framework to abstract PMI support for all RTEs. Replace the ORTE daemon-level collectives with a new PMIx server and update the ORTE grpcomm framework to support server-to-server collectives WHY: We’ve had problems dealing with variations in PMI implementations, and need to extend the existing PMI definitions to meet exascale requirements. WHEN: Mon, Aug 25 WHERE: https://github.com/rhc54/ompi-svn-mirror.git Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding. All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level. Accordingly, we have: * created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations. * Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported. * Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint * removed the prior OMPI/OPAL modex code * added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform. * retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand This commit was SVN r32570.
2014-08-21 18:56:47 +00:00
}
2015-08-29 21:19:27 -07:00
/* now that we have all required info, complete the setup */
/*
* stdout/stderr buffering
* If the user requested to override the default setting then do
* as they wish.
*/
if( orte_ess_base_std_buffering > -1 ) {
if( 0 == orte_ess_base_std_buffering ) {
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stderr, NULL, _IONBF, 0);
}
else if( 1 == orte_ess_base_std_buffering ) {
setvbuf(stdout, NULL, _IOLBF, 0);
setvbuf(stderr, NULL, _IOLBF, 0);
}
else if( 2 == orte_ess_base_std_buffering ) {
setvbuf(stdout, NULL, _IOFBF, 0);
setvbuf(stderr, NULL, _IOFBF, 0);
}
}
/* if I am an MPI app, we will let the MPI layer define and
* control the opal_proc_t structure. Otherwise, we need to
* do so here */
if (ORTE_PROC_NON_MPI) {
orte_process_info.super.proc_name = *(opal_process_name_t*)ORTE_PROC_MY_NAME;
orte_process_info.super.proc_hostname = orte_process_info.nodename;
orte_process_info.super.proc_flags = OPAL_PROC_ALL_LOCAL;
orte_process_info.super.proc_arch = opal_local_arch;
opal_proc_local_set(&orte_process_info.super);
Per the PMIx RFC: WHAT: Merge the PMIx branch into the devel repo, creating a new OPAL “lmix” framework to abstract PMI support for all RTEs. Replace the ORTE daemon-level collectives with a new PMIx server and update the ORTE grpcomm framework to support server-to-server collectives WHY: We’ve had problems dealing with variations in PMI implementations, and need to extend the existing PMI definitions to meet exascale requirements. WHEN: Mon, Aug 25 WHERE: https://github.com/rhc54/ompi-svn-mirror.git Several community members have been working on a refactoring of the current PMI support within OMPI. Although the APIs are common, Slurm and Cray implement a different range of capabilities, and package them differently. For example, Cray provides an integrated PMI-1/2 library, while Slurm separates the two and requires the user to specify the one to be used at runtime. In addition, several bugs in the Slurm implementations have caused problems requiring extra coding. All this has led to a slew of #if’s in the PMI code and bugs when the corner-case logic for one implementation accidentally traps the other. Extending this support to other implementations would have increased this complexity to an unacceptable level. Accordingly, we have: * created a new OPAL “pmix” framework to abstract the PMI support, with separate components for Cray, Slurm PMI-1, and Slurm PMI-2 implementations. * Replaced the current ORTE grpcomm daemon-based collective operation with an integrated PMIx server, and updated the grpcomm APIs to provide more flexible, multi-algorithm support for collective operations. At this time, only the xcast and allgather operations are supported. * Replaced the current global collective id with a signature based on the names of the participating procs. The allows an unlimited number of collectives to be executed by any group of processes, subject to the requirement that only one collective can be active at a time for a unique combination of procs. Note that a proc can be involved in any number of simultaneous collectives - it is the specific combination of procs that is subject to the constraint * removed the prior OMPI/OPAL modex code * added new macros for executing modex send/recv to simplify use of the new APIs. The send macros allow the caller to specify whether or not the BTL supports async modex operations - if so, then the non-blocking “fence” operation is used, if the active PMIx component supports it. Otherwise, the default is a full blocking modex exchange as we currently perform. * retained the current flag that directs us to use a blocking fence operation, but only to retrieve data upon demand This commit was SVN r32570.
2014-08-21 18:56:47 +00:00
}
/* open and setup the state machine */
if (ORTE_SUCCESS != (ret = mca_base_framework_open(&orte_state_base_framework, 0))) {
ORTE_ERROR_LOG(ret);
error = "orte_state_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_state_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_state_base_select";
goto error;
}
OPAL_TIMING_ENV_NEXT(ess_base_setup, "state_framework_open");
/* open the errmgr */
if (ORTE_SUCCESS != (ret = mca_base_framework_open(&orte_errmgr_base_framework, 0))) {
ORTE_ERROR_LOG(ret);
error = "orte_errmgr_base_open";
goto error;
}
OPAL_TIMING_ENV_NEXT(ess_base_setup, "errmgr_framework_open");
/* setup my session directory */
if (orte_create_session_dirs) {
OPAL_OUTPUT_VERBOSE((2, orte_ess_base_framework.framework_output,
"%s setting up session dir with\n\ttmpdir: %s\n\thost %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
(NULL == orte_process_info.tmpdir_base) ? "UNDEF" : orte_process_info.tmpdir_base,
orte_process_info.nodename));
if (ORTE_SUCCESS != (ret = orte_session_dir(true, ORTE_PROC_MY_NAME))) {
ORTE_ERROR_LOG(ret);
error = "orte_session_dir";
goto error;
}
/* Once the session directory location has been established, set
the opal_output env file location to be in the
proc-specific session directory. */
opal_output_set_output_file_info(orte_process_info.proc_session_dir,
"output-", NULL, NULL);
/* register the directory for cleanup */
if (NULL != opal_pmix.register_cleanup) {
if (orte_standalone_operation) {
if (OPAL_SUCCESS != (ret = opal_pmix.register_cleanup(orte_process_info.top_session_dir, true, false, true))) {
ORTE_ERROR_LOG(ret);
error = "register cleanup";
goto error;
}
} else {
if (OPAL_SUCCESS != (ret = opal_pmix.register_cleanup(orte_process_info.job_session_dir, true, false, false))) {
ORTE_ERROR_LOG(ret);
error = "register cleanup";
goto error;
}
}
}
}
OPAL_TIMING_ENV_NEXT(ess_base_setup, "create_session_dirs");
/* if we have info on the HNP and local daemon, process it */
if (NULL != orte_process_info.my_hnp_uri) {
/* we have to set the HNP's name, even though we won't route messages directly
* to it. This is required to ensure that we -do- send messages to the correct
* HNP name
*/
if (ORTE_SUCCESS != (ret = orte_rml_base_parse_uris(orte_process_info.my_hnp_uri,
ORTE_PROC_MY_HNP, NULL))) {
ORTE_ERROR_LOG(ret);
error = "orte_rml_parse_HNP";
goto error;
}
}
if (NULL != orte_process_info.my_daemon_uri) {
opal_value_t val;
/* extract the daemon's name so we can update the routing table */
if (ORTE_SUCCESS != (ret = orte_rml_base_parse_uris(orte_process_info.my_daemon_uri,
ORTE_PROC_MY_DAEMON, NULL))) {
ORTE_ERROR_LOG(ret);
error = "orte_rml_parse_daemon";
goto error;
}
/* Set the contact info in the database - this won't actually establish
* the connection, but just tells us how to reach the daemon
* if/when we attempt to send to it
*/
OBJ_CONSTRUCT(&val, opal_value_t);
val.key = OPAL_PMIX_PROC_URI;
val.type = OPAL_STRING;
val.data.string = orte_process_info.my_daemon_uri;
if (OPAL_SUCCESS != (ret = opal_pmix.store_local(ORTE_PROC_MY_DAEMON, &val))) {
ORTE_ERROR_LOG(ret);
val.key = NULL;
val.data.string = NULL;
OBJ_DESTRUCT(&val);
error = "store DAEMON URI";
goto error;
}
val.key = NULL;
val.data.string = NULL;
OBJ_DESTRUCT(&val);
}
/* setup the errmgr */
if (ORTE_SUCCESS != (ret = orte_errmgr_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_errmgr_base_select";
goto error;
}
OPAL_TIMING_ENV_NEXT(ess_base_setup, "errmgr_select");
/* setup process binding */
if (ORTE_SUCCESS != (ret = orte_ess_base_proc_binding())) {
error = "proc_binding";
goto error;
}
OPAL_TIMING_ENV_NEXT(rte_init, "ess_base_proc_binding");
/* this needs to be set to enable debugger use when direct launched */
if (NULL == orte_process_info.my_daemon_uri) {
orte_standalone_operation = true;
}
/* set max procs */
if (orte_process_info.max_procs < orte_process_info.num_procs) {
orte_process_info.max_procs = orte_process_info.num_procs;
}
/* push our hostname so others can find us, if they need to - the
* native PMIx component will ignore this request as the hostname
* is provided by the system */
OPAL_MODEX_SEND_VALUE(ret, OPAL_PMIX_GLOBAL, OPAL_PMIX_HOSTNAME, orte_process_info.nodename, OPAL_STRING);
if (ORTE_SUCCESS != ret) {
error = "db store hostname";
goto error;
}
/* if we are an ORTE app - and not an MPI app - then
* we need to exchange our connection info here.
* MPI_Init has its own modex, so we don't need to do
* two of them. However, if we don't do a modex at all,
* then processes have no way to communicate
*
* NOTE: only do this when the process originally launches.
* Cannot do this on a restart as the rest of the processes
* in the job won't be executing this step, so we would hang
*/
if (ORTE_PROC_IS_NON_MPI && !orte_do_not_barrier) {
/* need to commit the data before we fence */
opal_pmix.commit();
if (ORTE_SUCCESS != (ret = opal_pmix.fence(NULL, 0))) {
error = "opal_pmix.fence() failed";
goto error;
}
}
OPAL_TIMING_ENV_NEXT(rte_init, "rte_init_done");
return ORTE_SUCCESS;
error:
if (ORTE_ERR_SILENT != ret && !orte_report_silent_errors) {
orte_show_help("help-orte-runtime.txt",
"orte_init:startup:internal-failure",
true, error, ORTE_ERROR_NAME(ret), ret);
}
return ret;
}
static int rte_finalize(void)
{
/* remove the envars that we pushed into environ
* so we leave that structure intact
*/
if (added_transport_keys) {
unsetenv(OPAL_MCA_PREFIX"orte_precondition_transports");
}
if (added_num_procs) {
unsetenv(OPAL_MCA_PREFIX"orte_ess_num_procs");
}
if (added_app_ctx) {
unsetenv("OMPI_APP_CTX_NUM_PROCS");
}
if (added_pmix_envs) {
unsetenv("PMIX_NAMESPACE");
unsetenv("PMIX_RANK");
unsetenv("PMIX_SERVER_URI");
unsetenv("PMIX_SECURITY_MODE");
}
/* close frameworks */
(void) mca_base_framework_close(&orte_filem_base_framework);
(void) mca_base_framework_close(&orte_errmgr_base_framework);
2016-03-08 10:33:15 -08:00
/* mark us as finalized */
if (NULL != opal_pmix.finalize) {
opal_pmix.finalize();
(void) mca_base_framework_close(&opal_pmix_base_framework);
}
2015-06-23 20:59:57 -07:00
(void) mca_base_framework_close(&orte_state_base_framework);
orte_session_dir_finalize(ORTE_PROC_MY_NAME);
/* cleanup the process info */
orte_proc_info_finalize();
2016-03-08 10:33:15 -08:00
/* release the event base */
if (progress_thread_running) {
opal_progress_thread_finalize(NULL);
progress_thread_running = false;
}
return ORTE_SUCCESS;
}
#define ORTE_URI_MSG_LGTH 256
static void set_handler_default(int sig)
{
struct sigaction act;
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
sigaction(sig, &act, (struct sigaction *)0);
}
static int fork_hnp(void)
{
int p[2], death_pipe[2];
char *cmd;
char **argv = NULL;
int argc;
char *param, *cptr;
sigset_t sigs;
int buffer_length, num_chars_read, chunk;
char *orted_uri;
2015-08-29 21:19:27 -07:00
int rc, i;
/* A pipe is used to communicate between the parent and child to
indicate whether the exec ultimately succeeded or failed. The
child sets the pipe to be close-on-exec; the child only ever
writes anything to the pipe if there is an error (e.g.,
executable not found, exec() fails, etc.). The parent does a
blocking read on the pipe; if the pipe closed with no data,
then the exec() succeeded. If the parent reads something from
the pipe, then the child was letting us know that it failed.
*/
if (pipe(p) < 0) {
ORTE_ERROR_LOG(ORTE_ERR_SYS_LIMITS_PIPES);
return ORTE_ERR_SYS_LIMITS_PIPES;
}
/* we also have to give the HNP a pipe it can watch to know when
* we terminated. Since the HNP is going to be a child of us, it
* can't just use waitpid to see when we leave - so it will watch
* the pipe instead
*/
if (pipe(death_pipe) < 0) {
ORTE_ERROR_LOG(ORTE_ERR_SYS_LIMITS_PIPES);
return ORTE_ERR_SYS_LIMITS_PIPES;
}
/* find the orted binary using the install_dirs support - this also
* checks to ensure that we can see this executable and it *is* executable by us
*/
cmd = opal_path_access("orted", opal_install_dirs.bindir, X_OK);
if (NULL == cmd) {
/* guess we couldn't do it - best to abort */
ORTE_ERROR_LOG(ORTE_ERR_FILE_NOT_EXECUTABLE);
close(p[0]);
close(p[1]);
return ORTE_ERR_FILE_NOT_EXECUTABLE;
}
/* okay, setup an appropriate argv */
opal_argv_append(&argc, &argv, "orted");
/* tell the daemon it is to be the HNP */
opal_argv_append(&argc, &argv, "--hnp");
/* tell the daemon to get out of our process group */
opal_argv_append(&argc, &argv, "--set-sid");
/* tell the daemon to report back its uri so we can connect to it */
opal_argv_append(&argc, &argv, "--report-uri");
asprintf(&param, "%d", p[1]);
opal_argv_append(&argc, &argv, param);
free(param);
/* give the daemon a pipe it can watch to tell when we have died */
opal_argv_append(&argc, &argv, "--singleton-died-pipe");
asprintf(&param, "%d", death_pipe[0]);
opal_argv_append(&argc, &argv, param);
free(param);
/* add any debug flags */
if (orte_debug_flag) {
opal_argv_append(&argc, &argv, "--debug");
}
if (orte_debug_daemons_flag) {
opal_argv_append(&argc, &argv, "--debug-daemons");
}
if (orte_debug_daemons_file_flag) {
if (!orte_debug_daemons_flag) {
opal_argv_append(&argc, &argv, "--debug-daemons");
}
opal_argv_append(&argc, &argv, "--debug-daemons-file");
}
/* indicate that it must use the novm state machine */
opal_argv_append(&argc, &argv, "-"OPAL_MCA_CMD_LINE_ID);
opal_argv_append(&argc, &argv, "state_novm_select");
opal_argv_append(&argc, &argv, "1");
/* direct the selection of the ess component */
opal_argv_append(&argc, &argv, "-"OPAL_MCA_CMD_LINE_ID);
opal_argv_append(&argc, &argv, "ess");
opal_argv_append(&argc, &argv, "hnp");
/* direct the selection of the pmix component */
opal_argv_append(&argc, &argv, "-"OPAL_MCA_CMD_LINE_ID);
opal_argv_append(&argc, &argv, "pmix");
opal_argv_append(&argc, &argv, "^s1,s2,cray,isolated");
/* Fork off the child */
orte_process_info.hnp_pid = fork();
if(orte_process_info.hnp_pid < 0) {
ORTE_ERROR_LOG(ORTE_ERR_SYS_LIMITS_CHILDREN);
close(p[0]);
close(p[1]);
close(death_pipe[0]);
close(death_pipe[1]);
free(cmd);
opal_argv_free(argv);
return ORTE_ERR_SYS_LIMITS_CHILDREN;
}
if (orte_process_info.hnp_pid == 0) {
close(p[0]);
close(death_pipe[1]);
/* I am the child - exec me */
/* Set signal handlers back to the default. Do this close
to the execve() because the event library may (and likely
will) reset them. If we don't do this, the event
library may have left some set that, at least on some
OS's, don't get reset via fork() or exec(). Hence, the
orted could be unkillable (for example). */
set_handler_default(SIGTERM);
set_handler_default(SIGINT);
set_handler_default(SIGHUP);
set_handler_default(SIGPIPE);
set_handler_default(SIGCHLD);
/* Unblock all signals, for many of the same reasons that
we set the default handlers, above. This is noticable
on Linux where the event library blocks SIGTERM, but we
don't want that blocked by the orted (or, more
specifically, we don't want it to be blocked by the
orted and then inherited by the ORTE processes that it
forks, making them unkillable by SIGTERM). */
sigprocmask(0, 0, &sigs);
sigprocmask(SIG_UNBLOCK, &sigs, 0);
execv(cmd, argv);
/* if I get here, the execv failed! */
orte_show_help("help-ess-base.txt", "ess-base:execv-error",
true, cmd, strerror(errno));
exit(1);
} else {
int count;
free(cmd);
/* I am the parent - wait to hear something back and
* report results
*/
close(p[1]); /* parent closes the write - orted will write its contact info to it*/
close(death_pipe[0]); /* parent closes the death_pipe's read */
opal_argv_free(argv);
/* setup the buffer to read the HNP's uri */
buffer_length = ORTE_URI_MSG_LGTH;
chunk = ORTE_URI_MSG_LGTH-1;
num_chars_read = 0;
orted_uri = (char*)malloc(buffer_length);
2015-08-29 21:19:27 -07:00
memset(orted_uri, 0, buffer_length);
while (0 != (rc = read(p[0], &orted_uri[num_chars_read], chunk))) {
if (rc < 0 && (EAGAIN == errno || EINTR == errno)) {
continue;
} else if (rc < 0) {
num_chars_read = -1;
break;
}
/* we read something - better get more */
num_chars_read += rc;
chunk -= rc;
if (0 == chunk) {
chunk = ORTE_URI_MSG_LGTH;
orted_uri = realloc((void*)orted_uri, buffer_length+chunk);
memset(&orted_uri[buffer_length], 0, chunk);
buffer_length += chunk;
}
}
close(p[0]);
if (num_chars_read <= 0) {
/* we didn't get anything back - this is bad */
ORTE_ERROR_LOG(ORTE_ERR_HNP_COULD_NOT_START);
free(orted_uri);
return ORTE_ERR_HNP_COULD_NOT_START;
}
/* parse the sysinfo from the returned info - must
* start from the end of the string as the uri itself
* can contain brackets */
if (NULL == (param = strrchr(orted_uri, '['))) {
ORTE_ERROR_LOG(ORTE_ERR_COMM_FAILURE);
free(orted_uri);
return ORTE_ERR_COMM_FAILURE;
}
*param = '\0'; /* terminate the uri string */
++param; /* point to the start of the sysinfo */
/* find the end of the sysinfo */
if (NULL == (cptr = strchr(param, ']'))) {
ORTE_ERROR_LOG(ORTE_ERR_COMM_FAILURE);
free(orted_uri);
return ORTE_ERR_COMM_FAILURE;
}
*cptr = '\0'; /* terminate the sysinfo string */
++cptr; /* point to the start of the pmix uri */
/* convert the sysinfo string */
if (ORTE_SUCCESS != (rc = orte_util_convert_string_to_sysinfo(&orte_local_cpu_type,
&orte_local_cpu_model, param))) {
ORTE_ERROR_LOG(rc);
free(orted_uri);
return rc;
}
/* save the daemon uri - we will process it later */
orte_process_info.my_daemon_uri = strdup(orted_uri);
/* likewise, since this is also the HNP, set that uri too */
orte_process_info.my_hnp_uri = orted_uri;
/* split the pmix_uri into its parts */
argv = opal_argv_split(cptr, '*');
count = opal_argv_count(argv);
/* push each piece into the environment */
for (i=0; i < count; i++) {
char *c = strchr(argv[i], '=');
assert(NULL != c);
*c++ = '\0';
opal_setenv(argv[i], c, true, &environ);
2015-08-29 21:19:27 -07:00
}
opal_argv_free(argv);
added_pmix_envs = true;
/* all done - report success */
return ORTE_SUCCESS;
}
}
static void rte_abort(int status, bool report)
{
struct timespec tp = {0, 100000};
OPAL_OUTPUT_VERBOSE((1, orte_ess_base_framework.framework_output,
"%s ess:singleton:abort: abort with status %d",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
status));
/* PMI doesn't like NULL messages, but our interface
* doesn't provide one - so rig one up here
*/
opal_pmix.abort(status, "N/A", NULL);
/* provide a little delay for the PMIx thread to
* get the info out */
nanosleep(&tp, NULL);
/* Now Exit */
_exit(status);
}