1
1
openmpi/ompi/debuggers/ompi_dll.c

1571 строка
62 KiB
C
Исходник Обычный вид История

/* -*- Mode: C; c-basic-offset:4 ; -*- */
/**********************************************************************
* Copyright (C) 2000-2004 by Etnus, LLC.
* Copyright (C) 1999 by Etnus, Inc.
* Copyright (C) 1997-1998 Dolphin Interconnect Solutions Inc.
*
* Permission is hereby granted to use, reproduce, prepare derivative
* works, and to redistribute to others.
*
* DISCLAIMER
*
* Neither Dolphin Interconnect Solutions, Etnus LLC, nor any of their
* employees, makes any warranty express or implied, or assumes any
* legal liability or responsibility for the accuracy, completeness,
* or usefulness of any information, apparatus, product, or process
* disclosed, or represents that its use would not infringe privately
* owned rights.
*
* This code was written by
* James Cownie: Dolphin Interconnect Solutions. <jcownie@dolphinics.com>
* Etnus LLC <jcownie@etnus.com>
**********************************************************************/
/* Update log
*
* Jul 12 2001 FNW: Add a meaningful ID to the communicator name, and switch
* to using the recv_context as the unique_id field.
* Mar 6 2001 JHC: Add mqs_get_comm_group to allow a debugger to acquire
* processes less eagerly.
* Dec 13 2000 JHC: totalview/2514: Modify image_has_queues to return
* a silent FALSE if none of the expected data is
* present. This way you won't get complaints when
* you try this on non MPICH processes.
* Sep 8 2000 JVD: #include <string.h> to silence Linux Alpha compiler warnings.
* Mar 21 2000 JHC: Add the new entrypoint mqs_dll_taddr_width
* Nov 26 1998 JHC: Fix the problem that we weren't handling
* MPIR_Ignore_queues properly.
* Oct 22 1998 JHC: Fix a zero allocation problem
* Aug 19 1998 JHC: Fix some problems in our use of target_to_host on
* big endian machines.
* May 28 1998 JHC: Use the extra information we can return to say
* explicitly that sends are only showing non-blocking ops
* May 19 1998 JHC: Changed the names of the structs and added casts
* where needed to reflect the change to the way we handle
* type safety across the interface.
* Oct 27 1997 JHC: Created by exploding db_message_state_mpich.cxx
*/
/**
* Right now there is no MPI2 support
*/
#define FOR_MPI2 0
/*
The following was added by William Gropp to improve the portability
to systems with non-ANSI C compilers
*/
#include "ompi_config.h"
#ifdef HAVE_NO_C_CONST
#define const
#endif
#if defined(HAVE_STRING_H)
#include <string.h>
#endif /* defined(HAVE_STRING_H) */
#if defined(HAVE_STDLIB_H)
#include <stdlib.h>
#endif /* defined(HAVE_STDLIB_H) */
#include "ompi/mca/pml/base/pml_base_request.h"
/*
End of inclusion
*/
#include "mpi_interface.h"
#include "ompi_dll_defs.h"
/* Essential macros for C */
#ifndef NULL
#define NULL ((void *)0)
#endif
#ifndef TRUE
#define TRUE (0==0)
#endif
#ifndef FALSE
#define FALSE (0==1)
#endif
#ifdef OLD_STYLE_CPP_CONCAT
#define concat(a,b) a/**/b
#define stringize(a) "a"
#else
#define concat(a,b) a##b
#define stringize(a) #a
#endif
/**********************************************************************/
/* Set up the basic callbacks into the debugger, also work out
* one crucial piece of info about the machine we're running on.
*/
static const mqs_basic_callbacks *mqs_basic_entrypoints;
static int host_is_big_endian;
void mqs_setup_basic_callbacks (const mqs_basic_callbacks * cb)
{
int t = 1;
host_is_big_endian = (*(char *)&t) != 1;
mqs_basic_entrypoints = cb;
} /* mqs_setup_callbacks */
/**********************************************************************/
/* Macros to make it transparent that we're calling the TV functions
* through function pointers.
*/
#define mqs_malloc (mqs_basic_entrypoints->mqs_malloc_fp)
#define mqs_free (mqs_basic_entrypoints->mqs_free_fp)
#define mqs_prints (mqs_basic_entrypoints->mqs_dprints_fp)
#define mqs_put_image_info (mqs_basic_entrypoints->mqs_put_image_info_fp)
#define mqs_get_image_info (mqs_basic_entrypoints->mqs_get_image_info_fp)
#define mqs_put_process_info (mqs_basic_entrypoints->mqs_put_process_info_fp)
#define mqs_get_process_info (mqs_basic_entrypoints->mqs_get_process_info_fp)
/* These macros *RELY* on the function already having set up the conventional
* local variables i_info or p_info.
*/
#define mqs_find_type (i_info->image_callbacks->mqs_find_type_fp)
#define mqs_field_offset (i_info->image_callbacks->mqs_field_offset_fp)
#define mqs_sizeof (i_info->image_callbacks->mqs_sizeof_fp)
#define mqs_get_type_sizes (i_info->image_callbacks->mqs_get_type_sizes_fp)
#define mqs_find_function (i_info->image_callbacks->mqs_find_function_fp)
#define mqs_find_symbol (i_info->image_callbacks->mqs_find_symbol_fp)
#define mqs_get_image (p_info->process_callbacks->mqs_get_image_fp)
#define mqs_get_global_rank (p_info->process_callbacks->mqs_get_global_rank_fp)
#define mqs_fetch_data (p_info->process_callbacks->mqs_fetch_data_fp)
#define mqs_target_to_host (p_info->process_callbacks->mqs_target_to_host_fp)
/**********************************************************************/
/* Version handling functions.
* This one should never be changed.
*/
int mqs_version_compatibility (void)
{
return MQS_INTERFACE_COMPATIBILITY;
} /* mqs_version_compatibility */
/* This one can say what you like */
char *mqs_version_string (void)
{
return "Open MPI message queue support for parallel debuggers compiled on " __DATE__;
} /* mqs_version_string */
/* So the debugger can tell what interface width the library was compiled with */
int mqs_dll_taddr_width (void)
{
return sizeof (mqs_taddr_t);
} /* mqs_dll_taddr_width */
/**********************************************************************/
/* Additional error codes and error string conversion.
*/
enum {
err_silent_failure = mqs_first_user_code,
err_no_current_communicator,
err_bad_request,
err_no_store,
err_failed_qhdr,
err_unexpected,
err_posted,
err_failed_queue,
err_first,
err_context_id,
err_tag,
err_tagmask,
err_lsrc,
err_srcmask,
err_next,
err_ptr,
err_missing_type,
err_missing_symbol,
err_db_shandle,
err_db_comm,
err_db_target,
err_db_tag,
err_db_data,
err_db_byte_length,
err_db_next,
err_failed_rhandle,
err_is_complete,
err_buf,
err_len,
err_s,
err_failed_status,
err_count,
err_MPI_SOURCE,
err_MPI_TAG,
err_failed_commlist,
err_sequence_number,
err_comm_first,
err_failed_communicator,
err_lrank_to_grank,
err_send_context,
err_recv_context,
err_comm_next,
err_comm_name,
err_all_communicators,
err_mpid_sends,
err_mpid_recvs,
err_group_corrupt
};
/**********************************************************************/
/* Forward declarations
*/
static mqs_taddr_t fetch_pointer (mqs_process * proc, mqs_taddr_t addr, mpi_process_info *p_info);
static mqs_tword_t fetch_int (mqs_process * proc, mqs_taddr_t addr, mpi_process_info *p_info);
static mqs_tword_t fetch_bool(mqs_process * proc, mqs_taddr_t addr, mpi_process_info *p_info);
/* Internal structure we hold for each communicator */
typedef struct communicator_t
{
struct communicator_t * next;
group_t * group; /* Translations */
int recv_context; /* Unique ID for the communicator */
mqs_taddr_t comm_ptr;
int present;
mqs_communicator comm_info; /* Info needed at the higher level */
} communicator_t;
#if defined(CODE_NOT_USED)
/**********************************************************************/
/* Functions to handle translation groups.
* We have a list of these on the process info, so that we can
* share the group between multiple communicators.
*/
/**********************************************************************/
/* Translate a process number */
static int translate (group_t *this, int index)
{
if (index == MQS_INVALID_PROCESS ||
((unsigned int)index) >= ((unsigned int) this->entries))
return MQS_INVALID_PROCESS;
else
return this->local_to_global[index];
} /* translate */
/**********************************************************************/
/* Reverse translate a process number i.e. global to local*/
static int reverse_translate (group_t * this, int index)
{
int i;
for ( i = 0; i < this->entries; i++ )
if( this->local_to_global[i] == index )
return i;
return MQS_INVALID_PROCESS;
} /* reverse_translate */
#endif /* CODE_NOT_USED */
/**********************************************************************/
/* Search the group list for this group, if not found create it.
*/
static group_t * find_or_create_group (mqs_process *proc,
mqs_taddr_t table)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
int intsize = p_info->sizes.int_size;
communicator_t *comm = p_info->communicator_list;
int *tr;
char *trbuffer;
int i;
group_t *g;
int np;
np = fetch_int( proc,
table + i_info->ompi_group_t.offset.grp_proc_count,
p_info );
if( np < 0 ) {
printf( "Get a size for the communicator = %d\n", np );
return NULL; /* Makes no sense ! */
}
/* Iterate over each communicator seeing if we can find this group */
for (;comm; comm = comm->next) {
g = comm->group;
if (g && g->table_base == table) {
g->ref_count++; /* Someone else is interested */
return g;
}
}
/* Hmm, couldn't find one, so fetch it */
g = (group_t *)mqs_malloc (sizeof (group_t));
tr = (int *)mqs_malloc (np*sizeof(int));
trbuffer = (char *)mqs_malloc (np*intsize);
g->local_to_global = tr;
if (mqs_ok != mqs_fetch_data (proc, table, np*intsize, trbuffer) ) {
mqs_free (g);
mqs_free (tr);
mqs_free (trbuffer);
return NULL;
}
/* This code is assuming that sizeof(int) is the same on target and host...
* that's a bit flaky, but probably actually OK.
*/
for( i = 0; i < np; i++ )
mqs_target_to_host( proc, trbuffer+intsize*i, &tr[i], intsize );
mqs_free(trbuffer);
g->entries = np;
g->ref_count = 1;
return g;
} /* find_or_create_group */
/***********************************************************************/
static void group_decref (group_t * group)
{
if (--(group->ref_count) == 0) {
mqs_free (group->local_to_global);
mqs_free (group);
}
} /* group_decref */
/***********************************************************************
* Perform basic setup for the image, we just allocate and clear
* our info.
*/
int mqs_setup_image (mqs_image *image, const mqs_image_callbacks *icb)
{
mpi_image_info *i_info = (mpi_image_info *)mqs_malloc (sizeof (mpi_image_info));
if (!i_info)
return err_no_store;
memset ((void *)i_info, 0, sizeof (mpi_image_info));
i_info->image_callbacks = icb; /* Before we do *ANYTHING* */
mqs_put_image_info (image, (mqs_image_info *)i_info);
return mqs_ok;
} /* mqs_setup_image */
/***********************************************************************
* Check for all the information we require to access the Open MPI message queues.
* Stash it into our structure on the image if we're succesful.
*/
int mqs_image_has_queues (mqs_image *image, char **message)
{
mpi_image_info * i_info = (mpi_image_info *)mqs_get_image_info (image);
char* missing_in_action;
/* Default failure message ! */
*message = "The symbols and types in the Open MPI library used by TotalView\n"
"to extract the message queues are not as expected in\n"
"the image '%s'\n"
"No message queue display is possible.\n"
"This is probably an Open MPI version or configuration problem.";
/* Force in the file containing our breakpoint function, to ensure that
* types have been read from there before we try to look them up.
*/
mqs_find_function (image, "MPIR_Breakpoint", mqs_lang_c, NULL);
/* Are we supposed to ignore this ? (e.g. it's really an HPF runtime using the
* Open MPI process acquisition, but not wanting queue display)
*/
if (mqs_find_symbol (image, "MPIR_Ignore_queues", NULL) == mqs_ok) {
*message = NULL; /* Fail silently */
return err_silent_failure;
}
/**
* Open MPI use a bunch of lists in order to kep track of the internal
* objects. We have to make sure we're able to find all of them in the image
* and compute their ofset in order to be able to parse them later.
* We need to find the opal_list_item_t, the opal_list_t, the ompi_free_list_item_t,
* and the ompi_free_list_t.
*
* Once we have these offsets, we should make sure that we have access to all
* requests lists and types. We're looking here only at the basic type for the
* requests as they hold all the information we need to export to the debugger.
*/
{
mqs_type* qh_type = mqs_find_type( image, "opal_list_item_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "opal_list_item_t";
goto type_missing;
}
i_info->opal_list_item_t.size = mqs_sizeof(qh_type);
i_info->opal_list_item_t.offset.opal_list_next = mqs_field_offset(qh_type, "opal_list_next");
}
{
mqs_type* qh_type = mqs_find_type( image, "opal_list_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "opal_list_t";
goto type_missing;
}
i_info->opal_list_t.size = mqs_sizeof(qh_type);
i_info->opal_list_t.offset.opal_list_sentinel = mqs_field_offset(qh_type, "opal_list_sentinel");
}
{
mqs_type* qh_type = mqs_find_type( image, "ompi_free_list_item_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_free_list_item_t";
goto type_missing;
}
/* This is just an overloaded opal_list_item_t */
i_info->ompi_free_list_item_t.size = mqs_sizeof(qh_type);
}
{
mqs_type* qh_type = mqs_find_type( image, "ompi_free_list_memory_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_free_list_memory_t";
goto type_missing;
}
/* This is just an overloaded opal_list_item_t */
i_info->ompi_free_list_memory_t.size = mqs_sizeof(qh_type);
}
{
mqs_type* qh_type = mqs_find_type( image, "ompi_free_list_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_free_list_t";
goto type_missing;
}
i_info->ompi_free_list_t.size = mqs_sizeof(qh_type);
i_info->ompi_free_list_t.offset.fl_elem_size = mqs_field_offset(qh_type, "fl_elem_size");
i_info->ompi_free_list_t.offset.fl_header_space = mqs_field_offset(qh_type, "fl_header_space");
i_info->ompi_free_list_t.offset.fl_alignment = mqs_field_offset(qh_type, "fl_alignment");
i_info->ompi_free_list_t.offset.fl_allocations = mqs_field_offset(qh_type, "fl_allocations");
i_info->ompi_free_list_t.offset.fl_max_to_alloc = mqs_field_offset(qh_type, "fl_max_to_alloc");
i_info->ompi_free_list_t.offset.fl_num_per_alloc = mqs_field_offset(qh_type, "fl_num_per_alloc");
i_info->ompi_free_list_t.offset.fl_num_allocated = mqs_field_offset(qh_type, "fl_num_allocated");
}
/**
* Now let's look for all types required for reading the requests.
*/
{
mqs_type* qh_type = mqs_find_type( image, "ompi_request_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_request_t";
goto type_missing;
}
i_info->ompi_request_t.size = mqs_sizeof(qh_type);
i_info->ompi_request_t.offset.req_type = mqs_field_offset(qh_type, "req_type");
i_info->ompi_request_t.offset.req_status = mqs_field_offset(qh_type, "req_status");
i_info->ompi_request_t.offset.req_complete = mqs_field_offset(qh_type, "req_complete");
i_info->ompi_request_t.offset.req_state = mqs_field_offset(qh_type, "req_state");
i_info->ompi_request_t.offset.req_f_to_c_index = mqs_field_offset(qh_type, "req_f_to_c_index");
}
{
mqs_type* qh_type = mqs_find_type( image, "mca_pml_base_request_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "mca_pml_base_request_t";
goto type_missing;
}
i_info->mca_pml_base_request_t.size = mqs_sizeof(qh_type);
i_info->mca_pml_base_request_t.offset.req_addr = mqs_field_offset(qh_type, "req_addr");
i_info->mca_pml_base_request_t.offset.req_count = mqs_field_offset(qh_type, "req_count");
i_info->mca_pml_base_request_t.offset.req_peer = mqs_field_offset(qh_type, "req_peer");
i_info->mca_pml_base_request_t.offset.req_tag = mqs_field_offset(qh_type, "req_tag");
i_info->mca_pml_base_request_t.offset.req_comm = mqs_field_offset(qh_type, "req_comm");
i_info->mca_pml_base_request_t.offset.req_proc = mqs_field_offset(qh_type, "req_proc");
i_info->mca_pml_base_request_t.offset.req_sequence = mqs_field_offset(qh_type, "req_sequence");
i_info->mca_pml_base_request_t.offset.req_type = mqs_field_offset(qh_type, "req_type");
}
{
mqs_type* qh_type = mqs_find_type( image, "mca_pml_base_send_request_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "mca_pml_base_send_request_t";
goto type_missing;
}
i_info->mca_pml_base_send_request_t.size = mqs_sizeof(qh_type);
i_info->mca_pml_base_send_request_t.offset.req_addr = mqs_field_offset(qh_type, "req_addr");
i_info->mca_pml_base_send_request_t.offset.req_bytes_packed = mqs_field_offset(qh_type, "req_bytes_packed");
i_info->mca_pml_base_send_request_t.offset.req_send_mode = mqs_field_offset(qh_type, "req_send_mode");
}
{
mqs_type* qh_type = mqs_find_type( image, "mca_pml_base_recv_request_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "mca_pml_base_recv_request_t";
goto type_missing;
}
i_info->mca_pml_base_recv_request_t.size = mqs_sizeof(qh_type);
i_info->mca_pml_base_recv_request_t.offset.req_bytes_packed = mqs_field_offset(qh_type, "req_bytes_packed");
}
/**
* Gather information about the received fragments and theirs headers.
*/
{
mqs_type* qh_type = mqs_find_type( image, "mca_pml_ob1_common_hdr_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "mca_pml_ob1_common_hdr_t";
goto type_missing;
}
i_info->mca_pml_ob1_common_hdr_t.size = mqs_sizeof(qh_type);
i_info->mca_pml_ob1_common_hdr_t.offset.hdr_type = mqs_field_offset(qh_type, "hdr_type");
i_info->mca_pml_ob1_common_hdr_t.offset.hdr_flags = mqs_field_offset(qh_type, "hdr_flags");
}
{
mqs_type* qh_type = mqs_find_type( image, "mca_pml_ob1_match_hdr_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "mca_pml_ob1_match_hdr_t";
goto type_missing;
}
i_info->mca_pml_ob1_match_hdr_t.size = mqs_sizeof(qh_type);
i_info->mca_pml_ob1_match_hdr_t.offset.hdr_common = mqs_field_offset(qh_type, "hdr_common");
i_info->mca_pml_ob1_match_hdr_t.offset.hdr_ctx = mqs_field_offset(qh_type, "hdr_ctx");
i_info->mca_pml_ob1_match_hdr_t.offset.hdr_src = mqs_field_offset(qh_type, "hdr_src");
i_info->mca_pml_ob1_match_hdr_t.offset.hdr_tag = mqs_field_offset(qh_type, "hdr_tag");
i_info->mca_pml_ob1_match_hdr_t.offset.hdr_seq = mqs_field_offset(qh_type, "hdr_seq");
}
{
mqs_type* qh_type = mqs_find_type( image, "mca_pml_ob1_recv_frag_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "mca_pml_ob1_recv_frag_t";
goto type_missing;
}
i_info->mca_pml_ob1_recv_frag_t.size = mqs_sizeof(qh_type);
i_info->mca_pml_ob1_recv_frag_t.offset.hdr = mqs_field_offset(qh_type, "hdr");
i_info->mca_pml_ob1_recv_frag_t.offset.request = mqs_field_offset(qh_type, "request");
}
/**
* And now let's look at the communicator and group structures.
*/
{
mqs_type* qh_type = mqs_find_type( image, "ompi_pointer_array_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_pointer_array_t";
goto type_missing;
}
i_info->ompi_pointer_array_t.size = mqs_sizeof(qh_type);
i_info->ompi_pointer_array_t.offset.lowest_free = mqs_field_offset(qh_type, "lowest_free");
i_info->ompi_pointer_array_t.offset.size = mqs_field_offset(qh_type, "size");
i_info->ompi_pointer_array_t.offset.addr = mqs_field_offset(qh_type, "addr");
}
{
mqs_type* qh_type = mqs_find_type( image, "ompi_communicator_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_communicator_t";
goto type_missing;
}
i_info->ompi_communicator_t.size = mqs_sizeof(qh_type);
i_info->ompi_communicator_t.offset.c_name = mqs_field_offset(qh_type, "c_name");
i_info->ompi_communicator_t.offset.c_contextid = mqs_field_offset(qh_type, "c_contextid");
i_info->ompi_communicator_t.offset.c_my_rank = mqs_field_offset(qh_type, "c_my_rank" );
i_info->ompi_communicator_t.offset.c_local_group = mqs_field_offset(qh_type, "c_local_group" );
}
{
mqs_type* qh_type = mqs_find_type( image, "ompi_group_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_group_t";
goto type_missing;
}
i_info->ompi_group_t.size = mqs_sizeof(qh_type);
i_info->ompi_group_t.offset.grp_proc_count = mqs_field_offset(qh_type, "grp_proc_count");
i_info->ompi_group_t.offset.grp_my_rank = mqs_field_offset(qh_type, "grp_my_rank");
i_info->ompi_group_t.offset.grp_flags = mqs_field_offset(qh_type, "grp_flags" );
}
{
mqs_type* qh_type = mqs_find_type( image, "ompi_status_public_t", mqs_lang_c );
if( !qh_type ) {
missing_in_action = "ompi_status_public_t";
goto type_missing;
}
i_info->ompi_status_public_t.size = mqs_sizeof(qh_type);
i_info->ompi_status_public_t.offset.MPI_SOURCE = mqs_field_offset(qh_type, "MPI_SOURCE");
i_info->ompi_status_public_t.offset.MPI_TAG = mqs_field_offset(qh_type, "MPI_TAG");
i_info->ompi_status_public_t.offset.MPI_ERROR = mqs_field_offset(qh_type, "MPI_ERROR" );
i_info->ompi_status_public_t.offset._count = mqs_field_offset(qh_type, "_count" );
i_info->ompi_status_public_t.offset._cancelled = mqs_field_offset(qh_type, "_cancelled" );
}
/* All the types are here. Let's succesfully return. */
return mqs_ok;
type_missing:
/**
* One of the required types is missing in the image. We are unable to extract
* the information we need from the pointers. We did our best but here
* we're at our limit. Give up!
*/
*message = missing_in_action;
return err_missing_type;
} /* mqs_image_has_queues */
/***********************************************************************
* Setup information needed for a specific process.
* TV assumes that this will hang something onto the process,
* if nothing is attached to it, then TV will believe that this process
* has no message queue information.
*/
int mqs_setup_process (mqs_process *process, const mqs_process_callbacks *pcb)
{
/* Extract the addresses of the global variables we need and save them away */
mpi_process_info *p_info = (mpi_process_info *)mqs_malloc (sizeof (mpi_process_info));
if (p_info) {
mqs_image *image;
mpi_image_info *i_info;
p_info->process_callbacks = pcb;
/* Now we can get the rest of the info ! */
image = mqs_get_image (process);
i_info = (mpi_image_info *)mqs_get_image_info (image);
/* Library starts at zero, so this ensures we go look to start with */
p_info->communicator_sequence = -1;
/* We have no communicators yet */
p_info->communicator_list = NULL;
mqs_get_type_sizes (process, &p_info->sizes);
mqs_put_process_info (process, (mqs_process_info *)p_info);
return mqs_ok;
}
return err_no_store;
} /* mqs_setup_process */
/***********************************************************************
* Check the process for message queues.
*/
OMPI_DECLSPEC int mqs_process_has_queues (mqs_process *proc, char **msg)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
/* Don't bother with a pop up here, it's unlikely to be helpful */
*msg = 0;
if (mqs_find_symbol (image, "ompi_mpi_communicators", &p_info->commlist_base) != mqs_ok)
return err_all_communicators;
if (mqs_find_symbol (image, "mca_pml_base_send_requests", &p_info->send_queue_base) != mqs_ok)
return err_mpid_sends;
if (mqs_find_symbol (image, "mca_pml_base_recv_requests", &p_info->recv_queue_base) != mqs_ok)
return err_mpid_recvs;
return mqs_ok;
} /* mqs_setup_process_info */
/***********************************************************************
* Check if the communicators have changed by looking at the
* sequence number.
*/
static int communicators_changed (mqs_process *proc)
{
#if 0 /* TODO: how do we figure out which communicators have changed ? */
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
mqs_tword_t new_seq = fetch_int (proc,
p_info->commlist_base+i_info->sequence_number_offs,
p_info);
int res = (new_seq != p_info->communicator_sequence);
/* Save the sequence number for next time */
p_info->communicator_sequence = new_seq;
return res;
#endif
return 1;
} /* mqs_communicators_changed */
/***********************************************************************
* Find a matching communicator on our list. We check the recv context
* as well as the address since the communicator structures may be
* being re-allocated from a free list, in which case the same
* address will be re-used a lot, which could confuse us.
*/
static communicator_t * find_communicator (mpi_process_info *p_info,
int recv_ctx)
{
communicator_t * comm = p_info->communicator_list;
for (; comm; comm=comm->next) {
if (comm->recv_context == recv_ctx)
return comm;
}
return NULL;
} /* find_communicator */
/***********************************************************************
* Comparison function for sorting communicators.
*/
static int compare_comms (const void *a, const void *b)
{
communicator_t * ca = *(communicator_t **)a;
communicator_t * cb = *(communicator_t **)b;
return cb->recv_context - ca->recv_context;
} /* compare_comms */
/***********************************************************************
* Rebuild our list of communicators because something has changed
*/
static int rebuild_communicator_list (mqs_process *proc)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
communicator_t **commp, *old;
int commcount = 0;
int i;
mqs_tword_t comm_size;
mqs_taddr_t comm_addr_base = p_info->commlist_base + i_info->ompi_pointer_array_t.offset.addr;
mqs_taddr_t comm_ptr;
mqs_communicator remote_comm;
/**
* Start by getting the number of registered communicators in the
* global communicator array.
*/
comm_size = fetch_int( proc,
p_info->commlist_base + i_info->ompi_pointer_array_t.offset.size,
p_info );
/* Now get the pointer to the first communicator pointer */
comm_addr_base = fetch_pointer( proc, comm_addr_base, p_info );
for( i = 0; i < comm_size; i++ ) {
/* Get the communicator pointer */
comm_ptr =
fetch_pointer( proc,
comm_addr_base + i * p_info->sizes.pointer_size,
p_info );
if( 0 == comm_ptr ) continue;
/* Now let's grab the data we want from inside */
remote_comm.unique_id = fetch_int( proc,
comm_ptr + i_info->ompi_communicator_t.offset.c_contextid,
p_info );
remote_comm.local_rank = fetch_int( proc,
comm_ptr + i_info->ompi_communicator_t.offset.c_my_rank,
p_info );
mqs_fetch_data( proc, comm_ptr + i_info->ompi_communicator_t.offset.c_name,
64, remote_comm.name );
/* Do we already have this communicator ? */
old = find_communicator(p_info, remote_comm.unique_id);
if( NULL == old ) {
mqs_taddr_t group_base;
old = (communicator_t *)mqs_malloc (sizeof (communicator_t));
/* Save the results */
old->next = p_info->communicator_list;
p_info->communicator_list = old;
old->comm_ptr = comm_ptr;
old->recv_context = remote_comm.unique_id;
/* Now get the information about the group */
group_base =
fetch_pointer( proc, comm_ptr + i_info->ompi_communicator_t.offset.c_local_group,
p_info );
old->group = find_or_create_group( proc, group_base );
}
strncpy(old->comm_info.name, remote_comm.name, 64);
old->comm_info.unique_id = remote_comm.unique_id;
old->comm_info.local_rank = remote_comm.local_rank;
if( NULL != old->group ) {
old->comm_info.size = old->group->entries;
}
old->present = TRUE;
}
/* Now iterate over the list tidying up any communicators which
* no longer exist, and cleaning the flags on any which do.
*/
commp = &p_info->communicator_list;
for (; *commp; commp = &(*commp)->next) {
communicator_t *comm = *commp;
if (comm->present) {
comm->present = FALSE;
commcount++;
} else { /* It needs to be deleted */
*commp = comm->next; /* Remove from the list */
group_decref (comm->group); /* Group is no longer referenced from here */
mqs_free (comm);
if( *commp == NULL ) break;
}
}
if (commcount) {
/* Sort the list so that it is displayed in some semi-sane order. */
communicator_t ** comm_array =
(communicator_t **) mqs_malloc(commcount * sizeof (communicator_t *));
communicator_t *comm = p_info->communicator_list;
for (i=0; i<commcount; i++, comm=comm->next)
comm_array [i] = comm;
/* Do the sort */
qsort (comm_array, commcount, sizeof (communicator_t *), compare_comms);
/* Rebuild the list */
p_info->communicator_list = NULL;
for (i=0; i<commcount; i++) {
comm = comm_array[i];
comm->next = p_info->communicator_list;
p_info->communicator_list = comm;
}
mqs_free (comm_array);
}
return mqs_ok;
} /* rebuild_communicator_list */
/***********************************************************************
* Update the list of communicators in the process if it has changed.
*/
int mqs_update_communicator_list (mqs_process *proc)
{
if (communicators_changed (proc))
return rebuild_communicator_list (proc);
else
return mqs_ok;
} /* mqs_update_communicator_list */
/***********************************************************************
* Setup to iterate over communicators.
* This is where we check whether our internal communicator list needs
* updating and if so do it.
*/
int mqs_setup_communicator_iterator (mqs_process *proc)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
/* Start at the front of the list again */
p_info->current_communicator = p_info->communicator_list;
/* Reset the operation iterator too */
p_info->next_msg.free_list = 0;
p_info->next_msg.current_item = 0;
p_info->next_msg.opal_list_t_pos.list = 0;
return p_info->current_communicator == NULL ? mqs_end_of_list : mqs_ok;
} /* mqs_setup_communicator_iterator */
/***********************************************************************
* Fetch information about the current communicator.
*/
int mqs_get_communicator (mqs_process *proc, mqs_communicator *comm)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
if (p_info->current_communicator) {
*comm = p_info->current_communicator->comm_info;
return mqs_ok;
}
return err_no_current_communicator;
} /* mqs_get_communicator */
/***********************************************************************
* Get the group information about the current communicator.
*/
int mqs_get_comm_group (mqs_process *proc, int *group_members)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
communicator_t *comm = p_info->current_communicator;
if (comm && comm->group) {
group_t * g = comm->group;
int i;
for (i=0; i<g->entries; i++)
group_members[i] = g->local_to_global[i];
return mqs_ok;
}
return err_no_current_communicator;
} /* mqs_get_comm_group */
/***********************************************************************
* Step to the next communicator.
*/
int mqs_next_communicator (mqs_process *proc)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
p_info->current_communicator = p_info->current_communicator->next;
return (p_info->current_communicator != NULL) ? mqs_ok : mqs_end_of_list;
} /* mqs_next_communicator */
/**
* Parsing the opal_list_t.
*/
static int opal_list_t_init_parser( mqs_process *proc, mpi_process_info *p_info,
mqs_opal_list_t_pos* position, mqs_taddr_t list )
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
position->list = list;
position->sentinel = position->list + i_info->opal_list_t.offset.opal_list_sentinel;
position->current_item =
fetch_pointer( proc, position->sentinel + i_info->opal_list_item_t.offset.opal_list_next,
p_info );
if( position->current_item == position->sentinel )
position->current_item = 0;
return mqs_ok;
}
static int next_item_opal_list_t( mqs_process *proc, mpi_process_info *p_info,
mqs_opal_list_t_pos* position, mqs_taddr_t* active_item )
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
*active_item = position->current_item;
if( 0 == position->current_item )
return mqs_end_of_list;
position->current_item =
fetch_pointer( proc,
position->current_item + i_info->opal_list_item_t.offset.opal_list_next,
p_info );
if( position->current_item == position->sentinel )
position->current_item = 0;
return mqs_ok;
}
#if defined(CODE_NOT_USED)
/**
* Parsing the ompi_free_list lists.
*
*
*
*
*/
static void ompi_free_list_t_dump_position( mqs_ompi_free_list_t_pos* position )
{
printf( "position->opal_list_t_pos.current_item = 0x%llx\n", (long long)position->opal_list_t_pos.current_item );
printf( "position->opal_list_t_pos.list = 0x%llx\n", (long long)position->opal_list_t_pos.list );
printf( "position->opal_list_t_pos.sentinel = 0x%llx\n", (long long)position->opal_list_t_pos.sentinel );
printf( "position->current_item = 0x%llx\n", (long long)position->current_item );
printf( "position->upper_bound = 0x%llx\n", (long long)position->upper_bound );
printf( "position->free_list = 0x%llx\n", (long long)position->free_list );
printf( "position->fl_elem_size = %ld\n", (long)position->fl_elem_size );
printf( "position->fl_header_space = %ld\n", (long)position->fl_header_space );
printf( "position->fl_alignment = %ld\n", (long)position->fl_alignment );
printf( "position->fl_num_per_alloc = %ld\n", (long)position->fl_num_per_alloc );
printf( "position->fl_num_allocated = %ld\n", (long)position->fl_num_allocated );
printf( "position->fl_num_initial_alloc = %ld\n", (long)position->fl_num_initial_alloc );
}
#endif /* CODE_NOT_USED */
static int ompi_free_list_t_init_parser( mqs_process *proc, mpi_process_info *p_info,
mqs_ompi_free_list_t_pos* position, mqs_taddr_t free_list )
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
mqs_taddr_t active_allocation;
position->free_list = free_list;
position->fl_elem_size =
fetch_int( proc, position->free_list + i_info->ompi_free_list_t.offset.fl_elem_size,
p_info );
position->fl_header_space =
fetch_int( proc, position->free_list + i_info->ompi_free_list_t.offset.fl_header_space,
p_info );
position->fl_alignment =
fetch_int( proc, position->free_list + i_info->ompi_free_list_t.offset.fl_alignment,
p_info );
position->fl_num_per_alloc =
fetch_int( proc, position->free_list + i_info->ompi_free_list_t.offset.fl_num_per_alloc,
p_info );
position->fl_num_allocated =
fetch_int( proc, position->free_list + i_info->ompi_free_list_t.offset.fl_num_allocated,
p_info );
/**
* Work around the strange ompi_free_list_t way to allocate elements. The first chunk is
* not required to have the same size as the others.
* A similar work around should be set for the last chunk of allocations too !!! But how
* can we solve ONE equation with 2 unknowns ?
*/
if( position->fl_num_allocated <= position->fl_num_per_alloc ) {
position->fl_num_initial_alloc = position->fl_num_allocated;
} else {
position->fl_num_initial_alloc = position->fl_num_allocated % position->fl_num_per_alloc;
if( 0 == position->fl_num_initial_alloc )
position->fl_num_initial_alloc = position->fl_num_per_alloc;
}
/**
* Initialize the pointer to the opal_list_t.
*/
opal_list_t_init_parser( proc, p_info, &position->opal_list_t_pos,
position->free_list + i_info->ompi_free_list_t.offset.fl_allocations );
next_item_opal_list_t( proc, p_info, &position->opal_list_t_pos, &active_allocation );
if( 0 == active_allocation ) { /* the end of the list */
position->upper_bound = 0;
} else {
/**
* Handle alignment issues...
*/
active_allocation += i_info->ompi_free_list_memory_t.size;
if( 0 != position->fl_alignment ) {
mqs_tword_t modulo;
active_allocation += position->fl_header_space;
modulo = active_allocation % position->fl_alignment;
active_allocation += (position->fl_alignment - modulo);
active_allocation -= position->fl_header_space;
}
/**
* Now let's try to compute the upper bound ...
*/
position->upper_bound =
position->fl_num_initial_alloc * position->fl_elem_size + active_allocation;
}
position->current_item = active_allocation;
/*ompi_free_list_t_dump_position( position );*/
return mqs_ok;
}
/**
* Return the current position and move the internal counter to the next element.
*/
static int ompi_free_list_t_next_item( mqs_process *proc, mpi_process_info *p_info,
mqs_ompi_free_list_t_pos* position, mqs_taddr_t* active_item )
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
mqs_taddr_t active_allocation;
*active_item = position->current_item;
if( 0 == position->current_item ) /* the end ... */
return mqs_ok;
position->current_item += position->fl_elem_size;
if( position->current_item >= position->upper_bound ) {
/*printf( "Reach the end of one of the ompi_free_list_t allocations. Go to the next one\n" );*/
/* we should go to the next allocation */
next_item_opal_list_t( proc, p_info,
&position->opal_list_t_pos, &active_allocation );
if( 0 == active_allocation ) { /* we're at the end */
position->current_item = 0;
return mqs_ok;
}
/**
* Handle alignment issues...
*/
active_allocation += i_info->ompi_free_list_memory_t.size;
if( 0 != position->fl_alignment ) {
mqs_tword_t modulo;
active_allocation += position->fl_header_space;
modulo = active_allocation % position->fl_alignment;
active_allocation += (position->fl_alignment - modulo);
active_allocation -= position->fl_header_space;
}
/**
* Now let's try to compute the upper bound ...
*/
position->upper_bound =
position->fl_num_per_alloc * position->fl_elem_size + active_allocation;
position->current_item = active_allocation;
/*ompi_free_list_t_dump_position( position );*/
}
/*printf( "Free list actual position %p next element at %p\n", (void*)*active_item,
(void*)position->current_item );*/
return mqs_ok;
}
#if defined(CODE_NOT_USED)
static void dump_request( mqs_taddr_t current_item, mqs_pending_operation *res )
{
printf( "\n+===============================================+\n" );
printf( "|Request 0x%llx contain \n", (long long)current_item );
printf( "| res->status = %d\n", res->status );
printf( "| res->desired_local_rank = %ld\n", (long)res->desired_local_rank );
printf( "| res->desired_global_rank = %ld\n", (long)res->desired_global_rank );
printf( "| res->tag_wild = %ld\n", (long)res->tag_wild );
printf( "| res->desired_tag = %ld\n", (long)res->desired_tag );
printf( "| res->system_buffer = %s\n", (TRUE == res->system_buffer ? "TRUE" : "FALSE") );
printf( "| res->buffer = 0x%llx\n", (long long)res->buffer );
printf( "| res->desired_length = %ld\n", (long)res->desired_length );
if( res->status != mqs_st_pending ) {
printf( "| res->actual_length = %ld\n", (long)res->actual_length );
printf( "| res->actual_tag = %ld\n", (long)res->actual_tag );
printf( "| res->actual_local_rank = %ld\n", (long)res->actual_local_rank );
printf( "| res->actual_global_rank = %ld\n", (long)res->actual_global_rank );
}
printf( "+===============================================+\n\n" );
}
#endif /* CODE_NOT_USED */
/**
* TODO: ompi_request_completed can be used to detect any changes in the request handles.
*/
/**
* Handle the send queue as well as the receive queue. The unexpected queue
* is a whole different story ...
*/
static int fetch_request( mqs_process *proc, mpi_process_info *p_info,
mqs_pending_operation *res, int look_for_user_buffer )
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
mqs_taddr_t current_item;
mqs_tword_t req_complete, req_valid, req_type;
mqs_taddr_t req_buffer, req_comm;
while( 1 ) {
ompi_free_list_t_next_item( proc, p_info,
&p_info->next_msg, &current_item );
if( 0 == current_item )
return mqs_end_of_list;
req_valid = fetch_int( proc, current_item + i_info->ompi_request_t.offset.req_state, p_info );
if( OMPI_REQUEST_INVALID == req_valid ) continue;
req_comm = fetch_pointer( proc, current_item + i_info->mca_pml_base_request_t.offset.req_comm, p_info );
if( p_info->current_communicator->comm_ptr == req_comm ) break;
}
res->extra_text[0][0] = 0; res->extra_text[1][0] = 0; res->extra_text[2][0] = 0;
res->extra_text[3][0] = 0; res->extra_text[4][0] = 0;
req_type = fetch_int( proc, current_item + i_info->ompi_request_t.offset.req_type, p_info );
if( OMPI_REQUEST_PML == req_type ) {
req_type =
fetch_int( proc, current_item + i_info->mca_pml_base_request_t.offset.req_type,
p_info);
req_complete = fetch_bool( proc, current_item + i_info->ompi_request_t.offset.req_complete, p_info );
res->status = (req_complete == 0 ? mqs_st_pending : mqs_st_complete);
res->desired_local_rank =
fetch_int( proc, current_item + i_info->mca_pml_base_request_t.offset.req_peer, p_info );
res->desired_global_rank = res->desired_local_rank;
res->desired_tag =
fetch_int( proc, current_item + i_info->mca_pml_base_request_t.offset.req_tag, p_info );
res->tag_wild = (MPI_ANY_TAG == res->desired_tag ? TRUE : FALSE);
res->buffer = fetch_pointer( proc, current_item + i_info->mca_pml_base_request_t.offset.req_addr,
p_info );
res->system_buffer = FALSE;
if( MCA_PML_REQUEST_SEND == req_type ) {
snprintf( (char *)res->extra_text[0], 64, "Non-blocking send 0x%llx", (long long)current_item );
req_buffer =
fetch_pointer( proc, current_item + i_info->mca_pml_base_send_request_t.offset.req_addr,
p_info );
res->system_buffer = ( req_buffer == res->buffer ? FALSE : TRUE );
res->desired_length =
fetch_int( proc,
current_item + i_info->mca_pml_base_send_request_t.offset.req_bytes_packed, p_info );
} else if( MCA_PML_REQUEST_RECV == req_type ) {
snprintf( (char *)res->extra_text[0], 64, "Non-blocking recv 0x%llx", (long long)current_item );
} else {
snprintf( (char *)res->extra_text[0], 64, "Unknown type of request 0x%llx", (long long)current_item );
}
res->desired_length =
fetch_int( proc, current_item + i_info->mca_pml_base_request_t.offset.req_count, p_info );
if( mqs_st_pending != res->status ) { /* The real data from the status */
res->actual_length =
fetch_int( proc, current_item + i_info->ompi_request_t.offset.req_status +
i_info->ompi_status_public_t.offset._count, p_info );
res->actual_tag =
fetch_int( proc, current_item + i_info->ompi_request_t.offset.req_status +
i_info->ompi_status_public_t.offset.MPI_TAG, p_info );
res->actual_local_rank =
fetch_int( proc, current_item + i_info->ompi_request_t.offset.req_status +
i_info->ompi_status_public_t.offset.MPI_SOURCE, p_info );
res->actual_global_rank = res->actual_local_rank; /* TODO: what's the global rank ? */
}
/*dump_request( current_item, res );*/
}
return mqs_ok;
}
#if 0
/***********************************************************************
* Handle the unexpected queue and the pending receive queue.
* They're very similar.
*/
static int fetch_receive (mqs_process *proc, mpi_process_info *p_info,
mqs_pending_operation *res, int look_for_user_buffer)
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
communicator_t *comm = p_info->current_communicator;
mqs_tword_t wanted_context = comm->recv_context;
mqs_taddr_t base = fetch_pointer (proc, p_info->next_msg, p_info);
while (base != 0) { /* Well, there's a queue, at least ! */
mqs_tword_t actual_context = fetch_int (proc, base + i_info->context_id_offs, p_info);
if (actual_context == wanted_context) { /* Found a good one */
mqs_tword_t tag = fetch_int (proc, base + i_info->tag_offs, p_info);
mqs_tword_t tagmask = fetch_int (proc, base + i_info->tagmask_offs, p_info);
mqs_tword_t lsrc = fetch_int (proc, base + i_info->lsrc_offs, p_info);
mqs_tword_t srcmask = fetch_int (proc, base + i_info->srcmask_offs, p_info);
mqs_taddr_t ptr = fetch_pointer (proc, base + i_info->ptr_offs, p_info);
/* Fetch the fields from the MPIR_RHANDLE */
int is_complete = fetch_int (proc, ptr + i_info->is_complete_offs, p_info);
mqs_taddr_t buf = fetch_pointer (proc, ptr + i_info->buf_offs, p_info);
mqs_tword_t len = fetch_int (proc, ptr + i_info->len_offs, p_info);
mqs_tword_t count = fetch_int (proc, ptr + i_info->count_offs, p_info);
/* If we don't have start, then use buf instead... */
mqs_taddr_t start;
if (i_info->start_offs < 0)
start = buf;
else
start = fetch_pointer (proc, ptr + i_info->start_offs, p_info);
/* Hurrah, we should now be able to fill in all the necessary fields in the
* result !
*/
res->status = is_complete ? mqs_st_complete : mqs_st_pending; /* We can't discern matched */
if (srcmask == 0) {
res->desired_local_rank = -1;
res->desired_global_rank = -1;
} else {
res->desired_local_rank = lsrc;
res->desired_global_rank = translate (comm->group, lsrc);
}
res->tag_wild = (tagmask == 0);
res->desired_tag = tag;
if (look_for_user_buffer) {
res->system_buffer = FALSE;
res->buffer = buf;
res->desired_length = len;
} else {
res->system_buffer = TRUE;
/* Correct an oddity. If the buffer length is zero then no buffer
* is allocated, but the descriptor is left with random data.
*/
if (count == 0)
start = 0;
res->buffer = start;
res->desired_length = count;
}
if (is_complete) { /* Fill in the actual results, rather than what we were looking for */
mqs_tword_t mpi_source = fetch_int (proc, ptr + i_info->MPI_SOURCE_offs, p_info);
mqs_tword_t mpi_tag = fetch_int (proc, ptr + i_info->MPI_TAG_offs, p_info);
res->actual_length = count;
res->actual_tag = mpi_tag;
res->actual_local_rank = mpi_source;
res->actual_global_rank= translate (comm->group, mpi_source);
}
/* Don't forget to step the queue ! */
p_info->next_msg = base + i_info->next_offs;
return mqs_ok;
} else { /* Try the next one */
base = fetch_pointer (proc, base + i_info->next_offs, p_info);
}
}
p_info->next_msg = 0;
return mqs_end_of_list;
} /* fetch_receive */
/***********************************************************************
* Handle the send queue, somewhat different.
*/
static int fetch_send (mqs_process *proc, mpi_process_info *p_info,
mqs_pending_operation *res)
{
mqs_image * image = mqs_get_image (proc);
mpi_image_info *i_info = (mpi_image_info *)mqs_get_image_info (image);
communicator_t *comm = p_info->current_communicator;
mqs_taddr_t base = fetch_pointer (proc, p_info->next_msg, p_info);
/**
* Mark all send requests as non blocking. In Open MPI we are able to make
* a difference between blocking and non blocking by looking into the
* type field, but I'll keep this for later.
*/
strcpy( (char *)res->extra_text[0], "Non-blocking send" );
res->extra_text[1][0] = 0;
while (base != 0) { /* Well, there's a queue, at least ! */
/* Check if it's one we're interested in ? */
mqs_taddr_t commp = fetch_pointer (proc, base+i_info->db_comm_offs, p_info);
int recv_ctx = fetch_int (proc, commp+i_info->recv_context_offs, p_info);
mqs_taddr_t next = base+i_info->db_next_offs;
if (recv_ctx == comm->recv_context) { /* Found one */
mqs_tword_t target = fetch_int (proc, base+i_info->db_target_offs, p_info);
mqs_tword_t tag = fetch_int (proc, base+i_info->db_tag_offs, p_info);
mqs_tword_t length = fetch_int (proc, base+i_info->db_byte_length_offs, p_info);
mqs_taddr_t data = fetch_pointer (proc, base+i_info->db_data_offs, p_info);
mqs_taddr_t shandle= fetch_pointer (proc, base+i_info->db_shandle_offs, p_info);
mqs_tword_t complete=fetch_int (proc, shandle+i_info->is_complete_offs, p_info);
/* Ok, fill in the results */
res->status = complete ? mqs_st_complete : mqs_st_pending; /* We can't discern matched */
res->actual_local_rank = res->desired_local_rank = target;
res->actual_global_rank= res->desired_global_rank= translate (comm->group, target);
res->tag_wild = FALSE;
res->actual_tag = res->desired_tag = tag;
res->desired_length = res->actual_length = length;
res->system_buffer = FALSE;
res->buffer = data;
p_info->next_msg = next;
return mqs_ok;
}
base = fetch_pointer (proc, next, p_info);
}
p_info->next_msg = 0;
return mqs_end_of_list;
} /* fetch_send */
#endif
/***********************************************************************
* Setup to iterate over pending operations
*/
int mqs_setup_operation_iterator (mqs_process *proc, int op)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
p_info->what = (mqs_op_class)op;
switch (op) {
case mqs_pending_sends:
ompi_free_list_t_init_parser( proc, p_info, &p_info->next_msg, p_info->send_queue_base );
return mqs_ok;
case mqs_pending_receives:
ompi_free_list_t_init_parser( proc, p_info, &p_info->next_msg, p_info->recv_queue_base );
return mqs_ok;
case mqs_unexpected_messages: /* TODO */
return mqs_no_information;
default:
return err_bad_request;
}
} /* mqs_setup_operation_iterator */
/***********************************************************************
* Fetch the next valid operation.
* Since Open MPI only maintains a single queue of each type of operation,
* we have to run over it and filter out the operations which
* match the active communicator.
*/
int mqs_next_operation (mqs_process *proc, mqs_pending_operation *op)
{
mpi_process_info *p_info = (mpi_process_info *)mqs_get_process_info (proc);
switch (p_info->what) {
case mqs_pending_receives:
return fetch_request( proc, p_info, op, TRUE );
case mqs_unexpected_messages:
/* TODO: not handled yet */
return err_bad_request;
case mqs_pending_sends:
return fetch_request( proc, p_info, op, FALSE );
default: return err_bad_request;
}
} /* mqs_next_operation */
/***********************************************************************
* Destroy the info.
*/
void mqs_destroy_process_info (mqs_process_info *mp_info)
{
mpi_process_info *p_info = (mpi_process_info *)mp_info;
/* Need to handle the communicators and groups too */
communicator_t *comm = p_info->communicator_list;
while (comm) {
communicator_t *next = comm->next;
if( NULL != comm->group )
group_decref (comm->group); /* Group is no longer referenced from here */
mqs_free (comm);
comm = next;
}
mqs_free (p_info);
} /* mqs_destroy_process_info */
/***********************************************************************
* Free off the data we associated with an image. Since we malloced it
* we just free it.
*/
void mqs_destroy_image_info (mqs_image_info *info)
{
mqs_free (info);
} /* mqs_destroy_image_info */
/***********************************************************************/
static mqs_taddr_t fetch_pointer (mqs_process * proc, mqs_taddr_t addr, mpi_process_info *p_info)
{
int asize = p_info->sizes.pointer_size;
char data [8]; /* ASSUME a pointer fits in 8 bytes */
mqs_taddr_t res = 0;
if (mqs_ok == mqs_fetch_data (proc, addr, asize, data))
mqs_target_to_host (proc, data,
((char *)&res) + (host_is_big_endian ? sizeof(mqs_taddr_t)-asize : 0),
asize);
return res;
} /* fetch_pointer */
/***********************************************************************/
static mqs_tword_t fetch_int (mqs_process * proc, mqs_taddr_t addr, mpi_process_info *p_info)
{
int isize = p_info->sizes.int_size;
char buffer[8]; /* ASSUME an integer fits in 8 bytes */
mqs_tword_t res = 0;
if (mqs_ok == mqs_fetch_data (proc, addr, isize, buffer))
mqs_target_to_host (proc, buffer,
((char *)&res) + (host_is_big_endian ? sizeof(mqs_tword_t)-isize : 0),
isize);
return res;
} /* fetch_int */
/***********************************************************************/
static mqs_tword_t fetch_bool(mqs_process * proc, mqs_taddr_t addr, mpi_process_info *p_info)
{
int isize = 1;
char buffer; /* ASSUME an integer fits in 8 bytes */
mqs_tword_t res = 0;
if (mqs_ok == mqs_fetch_data (proc, addr, isize, &buffer))
res = (mqs_tword_t)buffer;
return res;
} /* fetch_bool */
/***********************************************************************/
/* Convert an error code into a printable string */
char * mqs_dll_error_string (int errcode)
{
switch (errcode) {
case err_silent_failure:
return "";
case err_no_current_communicator:
return "No current communicator in the communicator iterator";
case err_bad_request:
return "Attempting to setup to iterate over an unknown queue of operations";
case err_no_store:
return "Unable to allocate store";
case err_failed_qhdr:
return "Failed to find type MPID_QHDR";
case err_unexpected:
return "Failed to find field 'unexpected' in MPID_QHDR";
case err_posted:
return "Failed to find field 'posted' in MPID_QHDR";
case err_failed_queue:
return "Failed to find type MPID_QUEUE";
case err_first:
return "Failed to find field 'first' in MPID_QUEUE";
case err_context_id:
return "Failed to find field 'context_id' in MPID_QEL";
case err_tag:
return "Failed to find field 'tag' in MPID_QEL";
case err_tagmask:
return "Failed to find field 'tagmask' in MPID_QEL";
case err_lsrc:
return "Failed to find field 'lsrc' in MPID_QEL";
case err_srcmask:
return "Failed to find field 'srcmask' in MPID_QEL";
case err_next:
return "Failed to find field 'next' in MPID_QEL";
case err_ptr:
return "Failed to find field 'ptr' in MPID_QEL";
case err_missing_type:
return "Failed to find some type";
case err_missing_symbol:
return "Failed to find field the global symbol";
case err_db_shandle:
return "Failed to find field 'db_shandle' in MPIR_SQEL";
case err_db_comm:
return "Failed to find field 'db_comm' in MPIR_SQEL";
case err_db_target:
return "Failed to find field 'db_target' in MPIR_SQEL";
case err_db_tag:
return "Failed to find field 'db_tag' in MPIR_SQEL";
case err_db_data:
return "Failed to find field 'db_data' in MPIR_SQEL";
case err_db_byte_length:
return "Failed to find field 'db_byte_length' in MPIR_SQEL";
case err_db_next:
return "Failed to find field 'db_next' in MPIR_SQEL";
case err_failed_rhandle:
return "Failed to find type MPIR_RHANDLE";
case err_is_complete:
return "Failed to find field 'is_complete' in MPIR_RHANDLE";
case err_buf:
return "Failed to find field 'buf' in MPIR_RHANDLE";
case err_len:
return "Failed to find field 'len' in MPIR_RHANDLE";
case err_s:
return "Failed to find field 's' in MPIR_RHANDLE";
case err_failed_status:
return "Failed to find type MPI_Status";
case err_count:
return "Failed to find field 'count' in MPIR_Status";
case err_MPI_SOURCE:
return "Failed to find field 'MPI_SOURCE' in MPIR_Status";
case err_MPI_TAG:
return "Failed to find field 'MPI_TAG' in MPIR_Status";
case err_failed_commlist:
return "Failed to find type MPIR_Comm_list";
case err_sequence_number:
return "Failed to find field 'sequence_number' in MPIR_Comm_list";
case err_comm_first:
return "Failed to find field 'comm_first' in MPIR_Comm_list";
case err_failed_communicator:
return "Failed to find type MPIR_Communicator";
case err_lrank_to_grank:
return "Failed to find field 'lrank_to_grank' in MPIR_Communicator";
case err_send_context:
return "Failed to find field 'send_context' in MPIR_Communicator";
case err_recv_context:
return "Failed to find field 'recv_context' in MPIR_Communicator";
case err_comm_next:
return "Failed to find field 'comm_next' in MPIR_Communicator";
case err_comm_name:
return "Failed to find field 'comm_name' in MPIR_Communicator";
case err_all_communicators:
return "Failed to find the global symbol MPIR_All_communicators";
case err_mpid_sends:
return "Failed to access the global send requests list";
case err_mpid_recvs:
return "Failed to access the global receive requests list";
case err_group_corrupt:
return "Could not read a communicator's group from the process (probably a store corruption)";
default: return "Unknown error code";
}
} /* mqs_dll_error_string */