1
1
openmpi/orte/util/nidmap.c

1107 строки
37 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "orte_config.h"
#include "orte/types.h"
#include "orte/constants.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "opal/dss/dss.h"
#include "opal/runtime/opal.h"
#include "opal/class/opal_pointer_array.h"
#include "opal/util/output.h"
#include "orte/mca/errmgr/errmgr.h"
#include "orte/util/show_help.h"
#include "orte/util/proc_info.h"
#include "orte/util/name_fns.h"
#include "orte/runtime/orte_globals.h"
#include "orte/util/nidmap.h"
static bool initialized = false;
int orte_util_nidmap_init(opal_buffer_t *buffer)
{
int32_t cnt;
int rc;
opal_byte_object_t *bo;
if (!initialized) {
/* need to construct the global arrays */
/* setup the nidmap array */
OBJ_CONSTRUCT(&orte_nidmap, opal_pointer_array_t);
opal_pointer_array_init(&orte_nidmap, 8, INT32_MAX, 8);
/* setup array of jmaps */
OBJ_CONSTRUCT(&orte_jobmap, opal_pointer_array_t);
opal_pointer_array_init(&orte_jobmap, 1, INT32_MAX, 1);
/* make sure we don't do this twice */
initialized = true;
}
/* it is okay if the buffer is empty */
if (NULL == buffer || 0 == buffer->bytes_used) {
return ORTE_SUCCESS;
}
/* extract the byte object holding the daemonmap */
cnt=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(buffer, &bo, &cnt, OPAL_BYTE_OBJECT))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* unpack the node map */
if (ORTE_SUCCESS != (rc = orte_util_decode_nodemap(bo))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* the bytes in the object were free'd by the decode */
/* extract the byte object holding the process map */
cnt=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(buffer, &bo, &cnt, OPAL_BYTE_OBJECT))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* unpack the process map */
if (ORTE_SUCCESS != (rc = orte_util_decode_pidmap(bo))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* the bytes in the object were free'd by the decode */
return ORTE_SUCCESS;
}
void orte_util_nidmap_finalize(void)
{
orte_nid_t **nids;
orte_jmap_t **jmaps;
int32_t i;
if (!initialized) {
/* nothing to do */
return;
}
/* deconstruct the global nidmap and jobmap arrays */
nids = (orte_nid_t**)orte_nidmap.addr;
for (i=0; i < orte_nidmap.size && NULL != nids[i]; i++) {
OBJ_RELEASE(nids[i]);
}
OBJ_DESTRUCT(&orte_nidmap);
jmaps = (orte_jmap_t**)orte_jobmap.addr;
for (i=0; i < orte_jobmap.size && NULL != jmaps[i]; i++) {
OBJ_RELEASE(jmaps[i]);
}
OBJ_DESTRUCT(&orte_jobmap);
/* flag that these are no longer initialized */
initialized = false;
}
int orte_util_setup_local_nidmap_entries(void)
{
orte_nid_t *node;
orte_jmap_t *jmap;
orte_pmap_t *pmap;
/* add a jmap entry for myself */
jmap = OBJ_NEW(orte_jmap_t);
jmap->job = ORTE_PROC_MY_NAME->jobid;
opal_pointer_array_add(&orte_jobmap, jmap);
jmap->num_procs = 1;
/* create a nidmap entry for this node */
node = OBJ_NEW(orte_nid_t);
node->name = strdup(orte_process_info.nodename);
node->daemon = ORTE_PROC_MY_DAEMON->vpid;
node->arch = orte_process_info.arch;
pmap = OBJ_NEW(orte_pmap_t);
pmap->local_rank = 0;
pmap->node_rank = 0;
node->index = opal_pointer_array_add(&orte_nidmap, node);
/* value array copies values, so everything must be set before
* calling the set_item function
*/
pmap->node = node->index;
opal_pointer_array_set_item(&jmap->pmap, ORTE_PROC_MY_NAME->vpid, pmap);
/* all done */
return ORTE_SUCCESS;
}
int orte_util_encode_nodemap(opal_byte_object_t *boptr)
{
orte_vpid_t *vpids;
orte_node_t **nodes;
char prefix[ORTE_MAX_NODE_PREFIX], *tmp;
int32_t i, len, firstnode, lastnode, nodenum, num_nodes;
uint8_t command = ORTE_CONTIG_NODE_CMD;
uint8_t num_digs;
uint8_t incdec;
int rc;
char *nodename;
opal_buffer_t buf;
int step;
int32_t *arch;
/* setup a buffer for tmp use */
OBJ_CONSTRUCT(&buf, opal_buffer_t);
/* determine the number of nodes in the global node array */
num_nodes = 0;
nodes = (orte_node_t**)orte_node_pool->addr;
while (num_nodes < orte_node_pool->size &&
NULL != nodes[num_nodes]) {
++num_nodes;
}
/* pack number of nodes */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &num_nodes, 1, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* pack the HNP's node name - don't mess with
* trying to encode it - it could be different
*/
/* if we are not keeping FQDN hostnames, abbreviate
* the nodename as required
*/
if (!orte_keep_fqdn_hostnames) {
char *ptr;
nodename = strdup(nodes[0]->name);
if (NULL != (ptr = strchr(nodename, '.'))) {
*ptr = '\0';
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &nodename, 1, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(nodename);
} else {
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &nodes[0]->name, 1, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
}
/* see if the cluster is configured with contiguous
* node names and we have more than the HNP
*/
if (orte_contiguous_nodes < num_nodes) {
/* discover the prefix - find first non-alpha character */
len = strlen(nodes[1]->name);
memset(prefix, 0, ORTE_MAX_NODE_PREFIX);
prefix[0] = nodes[1]->name[0]; /* must start with alpha */
for (i=1; i < len; i++) {
if (!isalpha(nodes[1]->name[i])) {
/* found a non-alpha char */
if (!isdigit(nodes[1]->name[i])) {
/* if it is anything but a digit,
* then that's not good
*/
opal_output(0, "%s encode:nidmap Nodename pattern is nonstandard",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME));
return ORTE_ERROR;
}
/* okay, this defines end of the prefix.
* convert rest of name to an offset
*/
firstnode = strtol(&(nodes[1]->name[i]), NULL, 10);
/* figure out how many digits are in the index */
for (num_digs=0; isdigit(nodes[1]->name[i+num_digs]); num_digs++);
goto PACK;
}
prefix[i] = nodes[1]->name[i];
}
PACK:
/* begin encoding rest of map by indicating that this will
* be a contiguous node map
*/
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &command, 1, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* pack the prefix */
tmp = &prefix[0];
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &tmp, 1, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
len = strlen(prefix);
/* pack the number of digits in the index */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &num_digs, 1, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* and the starting offset */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &firstnode, 1, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s encode:nidmap:contig_nodes prefix %s num_digits %d offset %d",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME), prefix, num_digs, firstnode));
lastnode = strtol(&(nodes[2]->name[i]), NULL, 10);
if ((lastnode - firstnode) < 0) {
/* we are decrementing */
incdec = 0;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &incdec, 1, OPAL_INT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
} else {
/* we are incrementing */
incdec = 1;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &incdec, 1, OPAL_INT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
}
lastnode = firstnode;
/* cycle through the nodes - pack the starting offset
* and total number of nodes in each contiguous range
*/
for (i=2; i < num_nodes; i++) {
nodenum = strtol(&(nodes[i]->name[len]), NULL, 10);
step = nodenum -lastnode;
if (step < 0) {
/* we are decrementing */
step = lastnode - nodenum;
}
if (step > 1) {
/* have a break - indicate end of range */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &lastnode, 1, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* indicate start of new range */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &nodenum, 1, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s encode:nidmap:contig_nodes end range %d start next range %d",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME), lastnode, nodenum));
}
lastnode = nodenum;
}
/* pack end of range */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &lastnode, 1, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s encode:nidmap:contig_nodes end range %d",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME), lastnode));
/* pack flag end of ranges */
lastnode = -1;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &lastnode, 1, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
} else {
/* if the nodes aren't contiguous, then we need
* to simply pack every nodename individually
*/
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s encode:nidmap non_contig_nodes - packing all names",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME)));
/* indicate that this will not be a contiguous node map */
command = ORTE_NON_CONTIG_NODE_CMD;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &command, 1, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
for (i=1; i < num_nodes; i++) {
if (!orte_keep_fqdn_hostnames) {
char *ptr;
nodename = strdup(nodes[i]->name);
if (NULL != (ptr = strchr(nodename, '.'))) {
*ptr = '\0';
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &nodename, 1, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(nodename);
} else {
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &nodes[i]->name, 1, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
}
}
}
/* since the daemon vpids may not correspond to the node
* index, we need to also pack the vpid array for all
* daemons. This scenario can happen when the user is
* employing a mapping algo that doesn't use all allocated
* nodes, and sprinkles procs across them in some non-contig
* manner. For example, use of the seq mapper where only
* some nodes are used, and where the usage leaves "holes"
* in the node array, will cause the daemon vpids to not
* match their node array index
*/
/* allocate space for the daemon vpids */
vpids = (orte_vpid_t*)malloc(num_nodes * sizeof(orte_vpid_t));
for (i=0; i < num_nodes; i++) {
if (NULL == nodes[i]->daemon) {
/* some nodes may not have daemons on them */
vpids[i] = ORTE_VPID_INVALID;
continue;
}
vpids[i] = nodes[i]->daemon->name.vpid;
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, vpids, num_nodes, ORTE_VPID))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(vpids);
if (OMPI_ENABLE_HETEROGENEOUS_SUPPORT) {
/* check to see if all reported archs are the same */
orte_homogeneous_nodes = true;
for (i=1; i < num_nodes; i++) {
if (nodes[i]->arch != nodes[0]->arch) {
orte_homogeneous_nodes = false;
break;
}
}
if (orte_homogeneous_nodes) {
/* if everything is homo, just set that
* flag - no need to send everything
*/
num_digs = 0;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &num_digs, 1, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
} else {
/* it isn't homo, so we have to pass the
* archs to the daemons
*/
num_digs = 1;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &num_digs, 1, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* allocate space for the node arch */
arch = (int32_t*)malloc(num_nodes * 4);
/* transfer the data from the nodes */
for (i=0; i < num_nodes; i++) {
arch[i] = nodes[i]->arch;
}
/* pack the values */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, arch, num_nodes, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(arch);
}
} else {
/* pack a flag indicating that the archs are the same */
num_digs = 0;
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &num_digs, 1, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
}
/* check if we are to send the profile file data */
if (orte_send_profile) {
int fd;
opal_byte_object_t bo, *bptr;
/* there must be a file specified */
if (NULL == opal_profile_file) {
/* print an error message */
return ORTE_ERR_BAD_PARAM;
}
fd = open(opal_profile_file, O_RDONLY);
if (fd < 0) {
orte_show_help("help-orte-runtime.txt", "orte_nidmap:file-cant-open", true, opal_profile_file);
return ORTE_ERR_FILE_OPEN_FAILURE;
}
/* loop through file until end */
bptr = &bo;
while (0 < read(fd, &bo.size, sizeof(bo.size))) {
/* this is the number of bytes in the byte object */
bo.bytes = (uint8_t *) malloc(bo.size);
if (0 > read(fd, bo.bytes, bo.size)) {
orte_show_help("help-orte-runtime.txt", "orte_nidmap:unable-read-file", true, opal_profile_file);
close(fd);
return ORTE_ERR_FILE_READ_FAILURE;
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &bptr, 1, OPAL_BYTE_OBJECT))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(bo.bytes);
}
}
/* transfer the payload to the byte object */
opal_dss.unload(&buf, (void**)&boptr->bytes, &boptr->size);
OBJ_DESTRUCT(&buf);
return ORTE_SUCCESS;
}
int orte_util_decode_nodemap(opal_byte_object_t *bo)
{
int n, loc, k, diglen, namelen;
char *prefix, digits[10];
int32_t num_nodes, lastnode, endrange, i, num_daemons;
orte_nid_t *node;
orte_vpid_t *vpids;
uint8_t command, num_digs;
orte_nid_t **nd, *ndptr;
uint8_t incdec;
int32_t index, step;
int32_t *arch;
opal_buffer_t buf;
opal_byte_object_t *boptr;
int rc;
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s decode:nidmap decoding nodemap",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME)));
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
/* if there are any entries already in the node array, clear it out */
if (0 < orte_nidmap.size) {
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
/* unfortunately, the opal function "remove_all" doesn't release
* the memory pointed to by the elements in the array, so we need
* to release those first
*/
nd = (orte_nid_t**)orte_nidmap.addr;
for (i=0; i < orte_nidmap.size && NULL != nd[i]; i++) {
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
OBJ_RELEASE(nd[i]);
}
/* now use the opal function to reset the internal pointers */
opal_pointer_array_remove_all(&orte_nidmap);
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
}
/* xfer the byte object to a buffer for unpacking */
OBJ_CONSTRUCT(&buf, opal_buffer_t);
opal_dss.load(&buf, bo->bytes, bo->size);
/* unpack number of nodes */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &num_nodes, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s decode:nidmap decoding %d nodes with %d already loaded",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME), num_nodes, orte_nidmap.lowest_free));
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
/* set the size of the nidmap storage so we minimize realloc's */
if (ORTE_SUCCESS != (rc = opal_pointer_array_set_size(&orte_nidmap, num_nodes))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* create the struct for the HNP's node */
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
node = OBJ_NEW(orte_nid_t);
/* the arch defaults to our arch so that non-hetero
* case will yield correct behavior
*/
opal_pointer_array_set_item(&orte_nidmap, 0, node);
/* unpack the name of the HNP's node */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &(node->name), &n, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* unpack flag to see if this is a contiguous node map or not */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &command, &n, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
if (ORTE_CONTIG_NODE_CMD == command) {
/* unpack the prefix */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &prefix, &n, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* the number of digits in the index */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &num_digs, &n, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* and the starting offset */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &lastnode, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* unpack increment/decrement flag */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &incdec, &n, OPAL_INT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* unpack the end of the range */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &endrange, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* setup loop params */
if (0 == incdec) {
endrange -= 1;
step = -1;
} else {
endrange += 1;
step = 1;
}
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s decode:nidmap:contig_nodes prefix %s num_digits %d offset %d endrange %d",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME), prefix, num_digs, lastnode, endrange));
namelen = strlen(prefix) + num_digs + 1;
/* cycle through the ranges */
index = 1;
while (1) {
for (i=lastnode; i != endrange; i += step) {
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
node = OBJ_NEW(orte_nid_t);
/* allocate space for the nodename */
node->name = (char*)malloc(namelen);
memset(node->name, 0, namelen);
loc = snprintf(node->name, namelen, "%s", prefix);
diglen = num_digs - snprintf(digits, 10, "%d", i);
for (k=0; k < diglen && loc < namelen; k++) {
node->name[loc] = '0';
loc++;
}
strncat(node->name, digits, num_digs);
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
/* the arch defaults to our arch so that non-hetero
* case will yield correct behavior
*/
opal_pointer_array_set_item(&orte_nidmap, index, node);
index++;
}
/* unpack start of new range */
n=1;
opal_dss.unpack(&buf, &lastnode, &n, OPAL_INT32);
/* if that is -1, then it flags no more ranges */
if (-1 == lastnode) {
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
goto process_daemons;
}
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &endrange, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
if (0 == incdec) {
endrange -= 1;
} else {
endrange += 1;
}
}
} else {
/* not contiguous - just loop over nodes and
* unpack the raw nodename
*/
for (i=1; i < num_nodes; i++) {
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
node = OBJ_NEW(orte_nid_t);
/* the arch defaults to our arch so that non-hetero
* case will yield correct behavior
*/
opal_pointer_array_set_item(&orte_nidmap, i, node);
/* unpack the node's name */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &(node->name), &n, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
}
}
Repair the MPI-2 dynamic operations. This includes: 1. repair of the linear and direct routed modules 2. repair of the ompi/pubsub/orte module to correctly init routes to the ompi-server, and correctly handle failure to correctly parse the provided ompi-server URI 3. modification of orterun to accept both "file" and "FILE" for designating where the ompi-server URI is to be found - purely a convenience feature 4. resolution of a message ordering problem during the connect/accept handshake that allowed the "send-first" proc to attempt to send to the "recv-first" proc before the HNP had actually updated its routes. Let this be a further reminder to all - message ordering is NOT guaranteed in the OOB 5. Repair the ompi/dpm/orte module to correctly init routes during connect/accept. Reminder to all: messages sent to procs in another job family (i.e., started by a different mpirun) are ALWAYS routed through the respective HNPs. As per the comments in orte/routed, this is REQUIRED to maintain connect/accept (where only the root proc on each side is capable of init'ing the routes), allow communication between mpirun's using different routing modules, and to minimize connections on tools such as ompi-server. It is all taken care of "under the covers" by the OOB to ensure that a route back to the sender is maintained, even when the different mpirun's are using different routed modules. 6. corrections in the orte/odls to ensure proper identification of daemons participating in a dynamic launch 7. corrections in build/nidmap to support update of an existing nidmap during dynamic launch 8. corrected implementation of the update_arch function in the ESS, along with consolidation of a number of ESS operations into base functions for easier maintenance. The ability to support info from multiple jobs was added, although we don't currently do so - this will come later to support further fault recovery strategies 9. minor updates to several functions to remove unnecessary and/or no longer used variables and envar's, add some debugging output, etc. 10. addition of a new macro ORTE_PROC_IS_DAEMON that resolves to true if the provided proc is a daemon There is still more cleanup to be done for efficiency, but this at least works. Tested on single-node Mac, multi-node SLURM via odin. Tests included connect/accept, publish/lookup/unpublish, comm_spawn, comm_spawn_multiple, and singleton comm_spawn. Fixes ticket #1256 This commit was SVN r18804.
2008-07-03 21:53:37 +04:00
process_daemons:
/* unpack the daemon names */
vpids = (orte_vpid_t*)malloc(num_nodes * sizeof(orte_vpid_t));
n=num_nodes;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, vpids, &n, ORTE_VPID))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* transfer the data to the nidmap, counting the number of
* daemons in the system
*/
num_daemons = 0;
nd = (orte_nid_t**)orte_nidmap.addr;
for (i=0; i < num_nodes; i++) {
nd[i]->daemon = vpids[i];
if (ORTE_VPID_INVALID != vpids[i]) {
++num_daemons;
}
}
free(vpids);
/* if we are a daemon or the HNP, update our num_procs */
if (orte_process_info.hnp || orte_process_info.daemon) {
orte_process_info.num_procs = num_daemons;
}
/* unpack a flag to see if we are in a homogeneous
* scenario - could be that no hetero is supported,
* or could be that things just are homo anyway
*/
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &num_digs, &n, OPAL_UINT8))) {
ORTE_ERROR_LOG(rc);
return rc;
}
if (0 == num_digs) {
/* homo situation */
orte_homogeneous_nodes = true;
} else {
/* hetero situation */
orte_homogeneous_nodes = false;
/* get the archs */
arch = (int32_t*)malloc(num_nodes * 4);
/* unpack the values */
n=num_nodes;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, arch, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* transfer the data to the nodes */
nd = (orte_nid_t**)orte_nidmap.addr;
for (i=0; i < num_nodes; i++) {
nd[i]->arch = arch[i];
}
free(arch);
}
/* unpack any attributes that may have been included */
n = 1;
nd = (orte_nid_t**)orte_nidmap.addr;
while (ORTE_SUCCESS == opal_dss.unpack(&buf, &boptr, &n, OPAL_BYTE_OBJECT)) {
char *nodename, *attr, *tptr;
opal_buffer_t bobuf;
orte_attr_t *attrdata;
/* setup to unpack the object */
OBJ_CONSTRUCT(&bobuf, opal_buffer_t);
opal_dss.load(&bobuf, boptr->bytes, boptr->size);
/* unpack the nodename */
n = 1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&bobuf, &nodename, &n, OPAL_STRING))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* find this node in nidmap */
for (i=0, ndptr=NULL; i < orte_nidmap.size && NULL != nd[i]; i++) {
/* since we may not have kept fqdn hostnames, we can only check
* for equality to the length of the name in the first field
* of an fqdn name
*/
tptr = strchr(nodename, '.');
if (NULL != tptr) {
*tptr = '\0';
}
if (0 == strncmp(nd[i]->name, nodename, strlen(nodename))) {
ndptr = nd[i];
break;
}
}
free(nodename); /* done with this */
if (NULL == ndptr) {
/* didn't find it! */
ORTE_ERROR_LOG(ORTE_ERR_NOT_FOUND);
return ORTE_ERR_NOT_FOUND;
}
/* loop through the rest of the object to unpack the attr's themselves */
n = 1;
while (ORTE_SUCCESS == opal_dss.unpack(&bobuf, &attr, &n, OPAL_STRING)) {
attrdata = OBJ_NEW(orte_attr_t);
attrdata->name = strdup(attr);
/* read the number of bytes in the blob */
n = 1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&bobuf, &attrdata->size, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* unpack the bytes */
attrdata->bytes = (uint8_t *) malloc(attrdata->size);
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&bobuf, attrdata->bytes, &attrdata->size, OPAL_BYTE))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* add to our list for this node */
opal_list_append(&ndptr->attrs, &attrdata->super);
}
OBJ_DESTRUCT(&bobuf);
n = 1;
}
if (0 < opal_output_get_verbosity(orte_debug_output)) {
nd = (orte_nid_t**)orte_nidmap.addr;
for (i=0; i < num_nodes; i++) {
opal_list_item_t *item;
orte_attr_t *attr;
opal_output(0, "%s node[%d].name %s daemon %s arch %0x",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME), i,
(NULL == nd[i]) ? "NULL" : nd[i]->name,
ORTE_VPID_PRINT(nd[i]->daemon),
(NULL == nd[i]) ? 0 : nd[i]->arch);
for (item = opal_list_get_first(&nd[i]->attrs);
item != opal_list_get_end(&nd[i]->attrs);
item = opal_list_get_next(item)) {
attr = (orte_attr_t*)item;
opal_output(0, "\tAttribute: %s #bytes: %d", attr->name, attr->size);
}
}
}
OBJ_DESTRUCT(&buf);
return ORTE_SUCCESS;
}
int orte_util_encode_pidmap(opal_byte_object_t *boptr)
{
int32_t *nodes;
orte_proc_t **procs;
orte_vpid_t i;
opal_buffer_t buf;
orte_local_rank_t *lrank;
orte_node_rank_t *nrank;
orte_job_t **jobs, *jdata;
int j;
int rc;
/* setup the working buffer */
OBJ_CONSTRUCT(&buf, opal_buffer_t);
jobs = (orte_job_t**)orte_job_data->addr;
/* for each job... */
for (j=1; j < orte_job_data->size; j++) {
/* the job array is no longer left-justified and may
* have holes in it as we recover resources at job
* completion
*/
if (NULL == jobs[j]) {
continue;
}
jdata = jobs[j];
/* pack the jobid */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &jdata->jobid, 1, ORTE_JOBID))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* pack the number of procs */
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, &jdata->num_procs, 1, ORTE_VPID))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* allocate memory for the nodes */
nodes = (int32_t*)malloc(jdata->num_procs * 4);
/* transfer and pack the node info in one pack */
procs = (orte_proc_t**)jdata->procs->addr;
for (i=0; i < jdata->num_procs; i++) {
nodes[i] = procs[i]->node->index;
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, nodes, jdata->num_procs, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
return rc;
}
/* free node storage */
free(nodes);
/* transfer and pack the local_ranks in one pack */
lrank = (orte_local_rank_t*)malloc(jdata->num_procs*sizeof(orte_local_rank_t));
for (i=0; i < jdata->num_procs; i++) {
lrank[i] = procs[i]->local_rank;
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, lrank, jdata->num_procs, ORTE_LOCAL_RANK))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(lrank);
/* transfer and pack the node ranks in one pack */
nrank = (orte_node_rank_t*)malloc(jdata->num_procs*sizeof(orte_node_rank_t));
for (i=0; i < jdata->num_procs; i++) {
nrank[i] = procs[i]->node_rank;
}
if (ORTE_SUCCESS != (rc = opal_dss.pack(&buf, nrank, jdata->num_procs, ORTE_NODE_RANK))) {
ORTE_ERROR_LOG(rc);
return rc;
}
free(nrank);
}
/* transfer the payload to the byte object */
opal_dss.unload(&buf, (void**)&boptr->bytes, &boptr->size);
OBJ_DESTRUCT(&buf);
return ORTE_SUCCESS;
}
int orte_util_decode_pidmap(opal_byte_object_t *bo)
{
orte_jobid_t jobid;
orte_vpid_t i, num_procs;
orte_pmap_t *pmap;
int32_t *nodes;
orte_local_rank_t *local_rank;
orte_node_rank_t *node_rank;
orte_std_cntr_t n;
opal_buffer_t buf;
orte_jmap_t **jobs, *jmap;
bool already_present;
int j;
int rc;
/* xfer the byte object to a buffer for unpacking */
OBJ_CONSTRUCT(&buf, opal_buffer_t);
if (ORTE_SUCCESS != (rc = opal_dss.load(&buf, bo->bytes, bo->size))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
n = 1;
/* cycle through the buffer */
while (ORTE_SUCCESS == (rc = opal_dss.unpack(&buf, &jobid, &n, ORTE_JOBID))) {
jobs = (orte_jmap_t**)orte_jobmap.addr;
/* is this job already in the map? */
already_present = false;
for (j=0; j < orte_jobmap.size && NULL != jobs[j]; j++) {
if (jobid == jobs[j]->job) {
already_present = true;
break;
}
}
/* unpack the number of procs */
n=1;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, &num_procs, &n, ORTE_VPID))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
/* allocate memory for the node info */
nodes = (int32_t*)malloc(num_procs * 4);
/* unpack it in one shot */
n=num_procs;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, nodes, &n, OPAL_INT32))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
/* allocate memory for local ranks */
local_rank = (orte_local_rank_t*)malloc(num_procs*sizeof(orte_local_rank_t));
/* unpack them in one shot */
n=num_procs;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, local_rank, &n, ORTE_LOCAL_RANK))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
/* allocate memory for node ranks */
node_rank = (orte_node_rank_t*)malloc(num_procs*sizeof(orte_node_rank_t));
/* unpack node ranks in one shot */
n=num_procs;
if (ORTE_SUCCESS != (rc = opal_dss.unpack(&buf, node_rank, &n, ORTE_NODE_RANK))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
/* if we don't already have this data, store it */
if (!already_present) {
/* create and add an entry for the job */
jmap = OBJ_NEW(orte_jmap_t);
jmap->job = jobid;
jmap->num_procs = num_procs;
if (0 > (j = opal_pointer_array_add(&orte_jobmap, jmap))) {
ORTE_ERROR_LOG(j);
rc = j;
goto cleanup;
}
/* allocate memory for the procs array */
opal_pointer_array_set_size(&jmap->pmap, num_procs);
/* xfer the data */
for (i=0; i < num_procs; i++) {
pmap = OBJ_NEW(orte_pmap_t);
pmap->node = nodes[i];
pmap->local_rank = local_rank[i];
pmap->node_rank = node_rank[i];
if (ORTE_SUCCESS != (rc = opal_pointer_array_set_item(&jmap->pmap, i, pmap))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
}
}
/* release data */
free(nodes);
free(local_rank);
free(node_rank);
/* setup for next cycle */
n = 1;
}
if (ORTE_ERR_UNPACK_READ_PAST_END_OF_BUFFER == rc) {
rc = ORTE_SUCCESS;
}
cleanup:
OBJ_DESTRUCT(&buf);
return rc;
}
/*** NIDMAP UTILITIES ***/
orte_jmap_t* orte_util_lookup_jmap(orte_jobid_t job)
{
int i;
orte_jmap_t **jmaps;
jmaps = (orte_jmap_t**)orte_jobmap.addr;
for (i=0; i < orte_jobmap.size && NULL != jmaps[i]; i++) {
OPAL_OUTPUT_VERBOSE((10, orte_debug_output,
"%s lookup:pmap: checking job %s for job %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
ORTE_JOBID_PRINT(jmaps[i]->job), ORTE_JOBID_PRINT(job)));
if (job == jmaps[i]->job) {
return jmaps[i];
}
}
/* if we didn't find it, return NULL */
return NULL;
}
orte_pmap_t* orte_util_lookup_pmap(orte_process_name_t *proc)
{
orte_jmap_t *jmap;
if (NULL == (jmap = orte_util_lookup_jmap(proc->jobid))) {
return NULL;
}
if (proc->vpid >= jmap->num_procs) {
return NULL;
}
/* is this index in range? */
if (jmap->pmap.size <= (int)proc->vpid) {
return NULL;
}
/* now that we know the vpid is within range, we can safely
* retrieve the value
*/
return (orte_pmap_t*)jmap->pmap.addr[proc->vpid];
}
/* the daemon's vpid does not necessarily correlate
* to the node's index in the node array since
* some nodes may not have a daemon on them. Thus,
* we have to search for the daemon in the array.
* Fortunately, this is rarely done
*/
static orte_nid_t* find_daemon_node(orte_process_name_t *proc)
{
int32_t i;
orte_nid_t **nids;
nids = (orte_nid_t**)orte_nidmap.addr;
for (i=0; i < orte_nidmap.size && NULL != nids[i]; i++) {
OPAL_OUTPUT_VERBOSE((10, orte_debug_output,
"%s find:daemon:node: checking daemon %s for %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
ORTE_VPID_PRINT(nids[i]->daemon), ORTE_VPID_PRINT(proc->vpid)));
if (nids[i]->daemon == proc->vpid) {
return nids[i];
}
}
/* if we didn't find it, return NULL */
return NULL;
}
orte_nid_t* orte_util_lookup_nid(orte_process_name_t *proc)
{
orte_nid_t **nids;
orte_pmap_t *pmap;
OPAL_OUTPUT_VERBOSE((5, orte_debug_output,
"%s lookup:nid: looking for proc %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
ORTE_NAME_PRINT(proc)));
if (ORTE_PROC_IS_DAEMON(proc->jobid)) {
/* looking for a daemon */
return find_daemon_node(proc);
}
/* looking for an application proc */
if (NULL == (pmap = orte_util_lookup_pmap(proc))) {
return NULL;
}
if (pmap->node < 0 || orte_nidmap.size <= pmap->node) {
ORTE_ERROR_LOG(ORTE_ERR_VALUE_OUT_OF_BOUNDS);
return NULL;
}
nids = (orte_nid_t**)orte_nidmap.addr;
return nids[pmap->node];
}