1
1
openmpi/orte/mca/ess/hnp/ess_hnp_module.c

905 строки
30 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2011 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2010-2011 Oak Ridge National Labs. All rights reserved.
Per RFC, bring in the following changes: * Remove paffinity, maffinity, and carto frameworks -- they've been wholly replaced by hwloc. * Move ompi_mpi_init() affinity-setting/checking code down to ORTE. * Update sm, smcuda, wv, and openib components to no longer use carto. Instead, use hwloc data. There are still optimizations possible in the sm/smcuda BTLs (i.e., making multiple mpools). Also, the old carto-based code found out how many NUMA nodes were ''available'' -- not how many were used ''in this job''. The new hwloc-using code computes the same value -- it was not updated to calculate how many NUMA nodes are used ''by this job.'' * Note that I cannot compile the smcuda and wv BTLs -- I ''think'' they're right, but they need to be verified by their owners. * The openib component now does a bunch of stuff to figure out where "near" OpenFabrics devices are. '''THIS IS A CHANGE IN DEFAULT BEHAVIOR!!''' and still needs to be verified by OpenFabrics vendors (I do not have a NUMA machine with an OpenFabrics device that is a non-uniform distance from multiple different NUMA nodes). * Completely rewrite the OMPI_Affinity_str() routine from the "affinity" mpiext extension. This extension now understands hyperthreads; the output format of it has changed a bit to reflect this new information. * Bunches of minor changes around the code base to update names/types from maffinity/paffinity-based names to hwloc-based names. * Add some helper functions into the hwloc base, mainly having to do with the fact that we have the hwloc data reporting ''all'' topology information, but sometimes you really only want the (online | available) data. This commit was SVN r26391.
2012-05-07 18:52:54 +04:00
* Copyright (c) 2011-2012 Cisco Systems, Inc. All rights reserved.
Per the meeting on moving the BTLs to OPAL, move the ORTE database "db" framework to OPAL so the relocated BTLs can access it. Because the data is indexed by process, this requires that we define a new "opal_identifier_t" that corresponds to the orte_process_name_t struct. In order to support multiple run-times, this is defined in opal/mca/db/db_types.h as a uint64_t without identifying the meaning of any part of that data. A few changes were required to support this move: 1. the PMI component used to identify rte-related data (e.g., host name, bind level) and package them as a unit to reduce the number of PMI keys. This code was moved up to the ORTE layer as the OPAL layer has no understanding of these concepts. In addition, the component locally stored data based on process jobid/vpid - this could no longer be supported (see below for the solution). 2. the hash component was updated to use the new opal_identifier_t instead of orte_process_name_t as its index for storing data in the hash tables. Previously, we did a hash on the vpid and stored the data in a 32-bit hash table. In the revised system, we don't see a separate "vpid" field - we only have a 64-bit opaque value. The orte_process_name_t hash turned out to do nothing useful, so we now store the data in a 64-bit hash table. Preliminary tests didn't show any identifiable change in behavior or performance, but we'll have to see if a move back to the 32-bit table is required at some later time. 3. the db framework was a "select one" system. However, since the PMI component could no longer use its internal storage system, the framework has now been changed to a "select many" mode of operation. This allows the hash component to handle all internal storage, while the PMI component only handles pushing/pulling things from the PMI system. This was something we had planned for some time - when fetching data, we first check internal storage to see if we already have it, and then automatically go to the global system to look for it if we don't. Accordingly, the framework was provided with a custom query function used during "select" that lets you seperately specify the "store" and "fetch" ordering. 4. the ORTE grpcomm and ess/pmi components, and the nidmap code, were updated to work with the new db framework and to specify internal/global storage options. No changes were made to the MPI layer, except for modifying the ORTE component of the OMPI/rte framework to support the new db framework. This commit was SVN r28112.
2013-02-26 21:50:04 +04:00
* Copyright (c) 2011-2013 Los Alamos National Security, LLC. All rights
* reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*
*/
#include "orte_config.h"
#include "orte/constants.h"
#include <sys/types.h>
#include <stdio.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "opal/class/opal_list.h"
Per the meeting on moving the BTLs to OPAL, move the ORTE database "db" framework to OPAL so the relocated BTLs can access it. Because the data is indexed by process, this requires that we define a new "opal_identifier_t" that corresponds to the orte_process_name_t struct. In order to support multiple run-times, this is defined in opal/mca/db/db_types.h as a uint64_t without identifying the meaning of any part of that data. A few changes were required to support this move: 1. the PMI component used to identify rte-related data (e.g., host name, bind level) and package them as a unit to reduce the number of PMI keys. This code was moved up to the ORTE layer as the OPAL layer has no understanding of these concepts. In addition, the component locally stored data based on process jobid/vpid - this could no longer be supported (see below for the solution). 2. the hash component was updated to use the new opal_identifier_t instead of orte_process_name_t as its index for storing data in the hash tables. Previously, we did a hash on the vpid and stored the data in a 32-bit hash table. In the revised system, we don't see a separate "vpid" field - we only have a 64-bit opaque value. The orte_process_name_t hash turned out to do nothing useful, so we now store the data in a 64-bit hash table. Preliminary tests didn't show any identifiable change in behavior or performance, but we'll have to see if a move back to the 32-bit table is required at some later time. 3. the db framework was a "select one" system. However, since the PMI component could no longer use its internal storage system, the framework has now been changed to a "select many" mode of operation. This allows the hash component to handle all internal storage, while the PMI component only handles pushing/pulling things from the PMI system. This was something we had planned for some time - when fetching data, we first check internal storage to see if we already have it, and then automatically go to the global system to look for it if we don't. Accordingly, the framework was provided with a custom query function used during "select" that lets you seperately specify the "store" and "fetch" ordering. 4. the ORTE grpcomm and ess/pmi components, and the nidmap code, were updated to work with the new db framework and to specify internal/global storage options. No changes were made to the MPI layer, except for modifying the ORTE component of the OMPI/rte framework to support the new db framework. This commit was SVN r28112.
2013-02-26 21:50:04 +04:00
#include "opal/mca/db/base/base.h"
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
#include "opal/mca/event/event.h"
#include "opal/runtime/opal.h"
#include "opal/runtime/opal_cr.h"
#include "opal/util/if.h"
#include "opal/util/os_path.h"
#include "opal/util/output.h"
#include "opal/util/malloc.h"
#include "opal/util/basename.h"
#include "opal/mca/pstat/base/base.h"
#include "opal/mca/hwloc/base/base.h"
#include "orte/mca/rml/base/base.h"
#include "orte/mca/rml/rml_types.h"
#include "orte/mca/routed/base/base.h"
#include "orte/mca/routed/routed.h"
#include "orte/mca/dfs/base/base.h"
#include "orte/mca/errmgr/base/base.h"
#include "orte/mca/grpcomm/base/base.h"
#include "orte/mca/iof/base/base.h"
#include "orte/mca/ras/base/base.h"
#include "orte/mca/plm/base/base.h"
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
#include "orte/mca/plm/plm.h"
#include "orte/mca/odls/base/base.h"
#include "orte/mca/sensor/base/base.h"
#include "orte/mca/sensor/sensor.h"
#include "orte/mca/rmaps/base/base.h"
#if OPAL_ENABLE_FT_CR == 1
#include "orte/mca/snapc/base/base.h"
#endif
#include "orte/mca/filem/base/base.h"
#include "orte/mca/state/base/base.h"
#include "orte/mca/state/state.h"
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
#include "orte/util/show_help.h"
#include "orte/util/proc_info.h"
#include "orte/util/session_dir.h"
#include "orte/util/hnp_contact.h"
#include "orte/util/name_fns.h"
#include "orte/util/show_help.h"
#include "orte/util/comm/comm.h"
#include "orte/util/nidmap.h"
#include "orte/runtime/runtime.h"
#include "orte/runtime/orte_wait.h"
#include "orte/runtime/orte_globals.h"
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
#include "orte/runtime/orte_quit.h"
#include "orte/runtime/orte_cr.h"
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
#include "orte/runtime/orte_locks.h"
#include "orte/runtime/orte_data_server.h"
#include "orte/mca/ess/ess.h"
#include "orte/mca/ess/base/base.h"
#include "orte/mca/ess/hnp/ess_hnp.h"
static int rte_init(void);
static int rte_finalize(void);
static void rte_abort(int status, bool report) __opal_attribute_noreturn__;
orte_ess_base_module_t orte_ess_hnp_module = {
rte_init,
rte_finalize,
rte_abort,
NULL /* ft_event */
};
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/* local globals */
static bool signals_set=false;
static bool forcibly_die=false;
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
static opal_event_t term_handler;
static opal_event_t epipe_handler;
static int term_pipe[2];
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
static opal_event_t sigusr1_handler;
static opal_event_t sigusr2_handler;
static opal_event_t sigtstp_handler;
static opal_event_t sigcont_handler;
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
static void abort_signal_callback(int signal);
static void clean_abort(int fd, short flags, void *arg);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
static void epipe_signal_callback(int fd, short flags, void *arg);
static void signal_forward_callback(int fd, short event, void *arg);
static void setup_sighandler(int signal, opal_event_t *ev,
opal_event_cbfunc_t cbfunc)
{
opal_event_signal_set(orte_event_base, ev, signal, cbfunc, ev);
opal_event_set_priority(ev, ORTE_ERROR_PRI);
opal_event_signal_add(ev, NULL);
}
static int rte_init(void)
{
int ret;
char *error = NULL;
char *contact_path, *jobfam_dir;
orte_job_t *jdata;
orte_node_t *node;
orte_proc_t *proc;
orte_app_context_t *app;
/* run the prolog */
if (ORTE_SUCCESS != (ret = orte_ess_base_std_prolog())) {
error = "orte_ess_base_std_prolog";
goto error;
}
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/* setup callback for SIGPIPE */
setup_sighandler(SIGPIPE, &epipe_handler, epipe_signal_callback);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/** setup callbacks for abort signals - from this point
* forward, we need to abort in a manner that allows us
* to cleanup. However, we cannot directly use libevent
* to trap these signals as otherwise we cannot respond
* to them if we are stuck in an event! So instead use
* the basic POSIX trap functions to handle the signal,
* and then let that signal handler do some magic to
* avoid the hang
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
*/
pipe(term_pipe);
/* setup an event to attempt normal termination on signal */
opal_event_set(orte_event_base, &term_handler, term_pipe[0], OPAL_EV_READ, clean_abort, NULL);
opal_event_set_priority(&term_handler, ORTE_ERROR_PRI);
opal_event_add(&term_handler, NULL);
/* point the signal trap to a function that will activate that event */
signal(SIGTERM, abort_signal_callback);
signal(SIGINT, abort_signal_callback);
signal(SIGHUP, abort_signal_callback);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/** setup callbacks for signals we should foward */
setup_sighandler(SIGUSR1, &sigusr1_handler, signal_forward_callback);
setup_sighandler(SIGUSR2, &sigusr2_handler, signal_forward_callback);
setup_sighandler(SIGTSTP, &sigtstp_handler, signal_forward_callback);
setup_sighandler(SIGCONT, &sigcont_handler, signal_forward_callback);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
signals_set = true;
#if OPAL_HAVE_HWLOC
{
hwloc_obj_t obj;
unsigned i, j;
/* get the local topology */
if (NULL == opal_hwloc_topology) {
if (OPAL_SUCCESS != opal_hwloc_base_get_topology()) {
error = "topology discovery";
goto error;
}
}
/* remove the hostname from the topology. Unfortunately, hwloc
* decided to add the source hostname to the "topology", thus
* rendering it unusable as a pure topological description. So
* we remove that information here.
*/
obj = hwloc_get_root_obj(opal_hwloc_topology);
for (i=0; i < obj->infos_count; i++) {
if (NULL == obj->infos[i].name ||
NULL == obj->infos[i].value) {
continue;
}
if (0 == strncmp(obj->infos[i].name, "HostName", strlen("HostName"))) {
free(obj->infos[i].name);
free(obj->infos[i].value);
/* left justify the array */
for (j=i; j < obj->infos_count-1; j++) {
obj->infos[j] = obj->infos[j+1];
}
obj->infos[obj->infos_count-1].name = NULL;
obj->infos[obj->infos_count-1].value = NULL;
obj->infos_count--;
break;
}
}
if (4 < opal_output_get_verbosity(orte_ess_base_output)) {
opal_output(0, "%s Topology Info:", ORTE_NAME_PRINT(ORTE_PROC_MY_NAME));
opal_dss.dump(0, opal_hwloc_topology, OPAL_HWLOC_TOPO);
}
}
#endif
/* if we are using xml for output, put an mpirun start tag */
if (orte_xml_output) {
fprintf(orte_xml_fp, "<mpirun>\n");
fflush(orte_xml_fp);
}
/* setup the global nidmap/pidmap object */
orte_nidmap.bytes = NULL;
orte_nidmap.size = 0;
orte_pidmap.bytes = NULL;
orte_pidmap.size = 0;
/* open and setup the opal_pstat framework so we can provide
* process stats if requested
*/
if (ORTE_SUCCESS != (ret = mca_base_framework_open(&opal_pstat_base_framework, 0))) {
ORTE_ERROR_LOG(ret);
error = "opal_pstat_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = opal_pstat_base_select())) {
ORTE_ERROR_LOG(ret);
error = "opal_pstat_base_select";
goto error;
}
/* open and setup the state machine */
if (ORTE_SUCCESS != (ret = orte_state_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_state_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_state_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_state_base_select";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_errmgr_base_open())) {
error = "orte_errmgr_base_open";
goto error;
}
/* Since we are the HNP, then responsibility for
* defining the name falls to the PLM component for our
* respective environment - hence, we have to open the PLM
* first and select that component.
*/
if (ORTE_SUCCESS != (ret = orte_plm_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_plm_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_plm_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_plm_base_select";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_plm.set_hnp_name())) {
ORTE_ERROR_LOG(ret);
error = "orte_plm_set_hnp_name";
goto error;
}
/* Setup the communication infrastructure */
/*
* Runtime Messaging Layer
*/
if (ORTE_SUCCESS != (ret = orte_rml_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_rml_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_rml_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_rml_base_select";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_errmgr_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_errmgr_base_select";
goto error;
}
/*
* Routed system
*/
if (ORTE_SUCCESS != (ret = orte_routed_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_routed_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_routed_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_routed_base_select";
goto error;
}
/* database */
if (ORTE_SUCCESS != (ret = mca_base_framework_open(&opal_db_base_framework, 0))) {
ORTE_ERROR_LOG(ret);
error = "orte_db_base_open";
goto error;
}
Per the meeting on moving the BTLs to OPAL, move the ORTE database "db" framework to OPAL so the relocated BTLs can access it. Because the data is indexed by process, this requires that we define a new "opal_identifier_t" that corresponds to the orte_process_name_t struct. In order to support multiple run-times, this is defined in opal/mca/db/db_types.h as a uint64_t without identifying the meaning of any part of that data. A few changes were required to support this move: 1. the PMI component used to identify rte-related data (e.g., host name, bind level) and package them as a unit to reduce the number of PMI keys. This code was moved up to the ORTE layer as the OPAL layer has no understanding of these concepts. In addition, the component locally stored data based on process jobid/vpid - this could no longer be supported (see below for the solution). 2. the hash component was updated to use the new opal_identifier_t instead of orte_process_name_t as its index for storing data in the hash tables. Previously, we did a hash on the vpid and stored the data in a 32-bit hash table. In the revised system, we don't see a separate "vpid" field - we only have a 64-bit opaque value. The orte_process_name_t hash turned out to do nothing useful, so we now store the data in a 64-bit hash table. Preliminary tests didn't show any identifiable change in behavior or performance, but we'll have to see if a move back to the 32-bit table is required at some later time. 3. the db framework was a "select one" system. However, since the PMI component could no longer use its internal storage system, the framework has now been changed to a "select many" mode of operation. This allows the hash component to handle all internal storage, while the PMI component only handles pushing/pulling things from the PMI system. This was something we had planned for some time - when fetching data, we first check internal storage to see if we already have it, and then automatically go to the global system to look for it if we don't. Accordingly, the framework was provided with a custom query function used during "select" that lets you seperately specify the "store" and "fetch" ordering. 4. the ORTE grpcomm and ess/pmi components, and the nidmap code, were updated to work with the new db framework and to specify internal/global storage options. No changes were made to the MPI layer, except for modifying the ORTE component of the OMPI/rte framework to support the new db framework. This commit was SVN r28112.
2013-02-26 21:50:04 +04:00
if (ORTE_SUCCESS != (ret = opal_db_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_db_base_select";
goto error;
}
/*
* Group communications
*/
if (ORTE_SUCCESS != (ret = orte_grpcomm_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_grpcomm_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_grpcomm_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_grpcomm_base_select";
goto error;
}
/* Now provide a chance for the PLM
* to perform any module-specific init functions. This
* needs to occur AFTER the communications are setup
* as it may involve starting a non-blocking recv
*/
if (ORTE_SUCCESS != (ret = orte_plm.init())) {
ORTE_ERROR_LOG(ret);
error = "orte_plm_init";
goto error;
}
/*
* Setup the remaining resource
* management and errmgr frameworks - application procs
* and daemons do not open these frameworks as they only use
* the hnp proxy support in the PLM framework.
*/
if (ORTE_SUCCESS != (ret = orte_ras_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_ras_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_ras_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_ras_base_find_available";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_rmaps_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_rmaps_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_rmaps_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_rmaps_base_find_available";
goto error;
}
/* Open/select the odls */
if (ORTE_SUCCESS != (ret = orte_odls_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_odls_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_odls_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_odls_base_select";
goto error;
}
/* enable communication with the rml */
if (ORTE_SUCCESS != (ret = orte_rml.enable_comm())) {
ORTE_ERROR_LOG(ret);
error = "orte_rml.enable_comm";
goto error;
}
/* we are an hnp, so update the contact info field for later use */
orte_process_info.my_hnp_uri = orte_rml.get_contact_info();
/* we are also officially a daemon, so better update that field too */
orte_process_info.my_daemon_uri = orte_rml.get_contact_info();
/* setup the orte_show_help system to recv remote output */
ret = orte_rml.recv_buffer_nb(ORTE_NAME_WILDCARD, ORTE_RML_TAG_SHOW_HELP,
ORTE_RML_PERSISTENT, orte_show_help_recv, NULL);
if (ret != ORTE_SUCCESS && ret != ORTE_ERR_NOT_IMPLEMENTED) {
This commit represents a bunch of work on a Mercurial side branch. As such, the commit message back to the master SVN repository is fairly long. = ORTE Job-Level Output Messages = Add two new interfaces that should be used for all new code throughout the ORTE and OMPI layers (we already make the search-and-replace on the existing ORTE / OMPI layers): * orte_output(): (and corresponding friends ORTE_OUTPUT, orte_output_verbose, etc.) This function sends the output directly to the HNP for processing as part of a job-specific output channel. It supports all the same outputs as opal_output() (syslog, file, stdout, stderr), but for stdout/stderr, the output is sent to the HNP for processing and output. More on this below. * orte_show_help(): This function is a drop-in-replacement for opal_show_help(), with two differences in functionality: 1. the rendered text help message output is sent to the HNP for display (rather than outputting directly into the process' stderr stream) 1. the HNP detects duplicate help messages and does not display them (so that you don't see the same error message N times, once from each of your N MPI processes); instead, it counts "new" instances of the help message and displays a message every ~5 seconds when there are new ones ("I got X new copies of the help message...") opal_show_help and opal_output still exist, but they only output in the current process. The intent for the new orte_* functions is that they can apply job-level intelligence to the output. As such, we recommend that all new ORTE and OMPI code use the new orte_* functions, not thei opal_* functions. === New code === For ORTE and OMPI programmers, here's what you need to do differently in new code: * Do not include opal/util/show_help.h or opal/util/output.h. Instead, include orte/util/output.h (this one header file has declarations for both the orte_output() series of functions and orte_show_help()). * Effectively s/opal_output/orte_output/gi throughout your code. Note that orte_output_open() takes a slightly different argument list (as a way to pass data to the filtering stream -- see below), so you if explicitly call opal_output_open(), you'll need to slightly adapt to the new signature of orte_output_open(). * Literally s/opal_show_help/orte_show_help/. The function signature is identical. === Notes === * orte_output'ing to stream 0 will do similar to what opal_output'ing did, so leaving a hard-coded "0" as the first argument is safe. * For systems that do not use ORTE's RML or the HNP, the effect of orte_output_* and orte_show_help will be identical to their opal counterparts (the additional information passed to orte_output_open() will be lost!). Indeed, the orte_* functions simply become trivial wrappers to their opal_* counterparts. Note that we have not tested this; the code is simple but it is quite possible that we mucked something up. = Filter Framework = Messages sent view the new orte_* functions described above and messages output via the IOF on the HNP will now optionally be passed through a new "filter" framework before being output to stdout/stderr. The "filter" OPAL MCA framework is intended to allow preprocessing to messages before they are sent to their final destinations. The first component that was written in the filter framework was to create an XML stream, segregating all the messages into different XML tags, etc. This will allow 3rd party tools to read the stdout/stderr from the HNP and be able to know exactly what each text message is (e.g., a help message, another OMPI infrastructure message, stdout from the user process, stderr from the user process, etc.). Filtering is not active by default. Filter components must be specifically requested, such as: {{{ $ mpirun --mca filter xml ... }}} There can only be one filter component active. = New MCA Parameters = The new functionality described above introduces two new MCA parameters: * '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that help messages will be aggregated, as described above. If set to 0, all help messages will be displayed, even if they are duplicates (i.e., the original behavior). * '''orte_base_show_output_recursions''': An MCA parameter to help debug one of the known issues, described below. It is likely that this MCA parameter will disappear before v1.3 final. = Known Issues = * The XML filter component is not complete. The current output from this component is preliminary and not real XML. A bit more work needs to be done to configure.m4 search for an appropriate XML library/link it in/use it at run time. * There are possible recursion loops in the orte_output() and orte_show_help() functions -- e.g., if RML send calls orte_output() or orte_show_help(). We have some ideas how to fix these, but figured that it was ok to commit before feature freeze with known issues. The code currently contains sub-optimal workarounds so that this will not be a problem, but it would be good to actually solve the problem rather than have hackish workarounds before v1.3 final. This commit was SVN r18434.
2008-05-14 00:00:55 +04:00
ORTE_ERROR_LOG(ret);
error = "setup receive for orte_show_help";
This commit represents a bunch of work on a Mercurial side branch. As such, the commit message back to the master SVN repository is fairly long. = ORTE Job-Level Output Messages = Add two new interfaces that should be used for all new code throughout the ORTE and OMPI layers (we already make the search-and-replace on the existing ORTE / OMPI layers): * orte_output(): (and corresponding friends ORTE_OUTPUT, orte_output_verbose, etc.) This function sends the output directly to the HNP for processing as part of a job-specific output channel. It supports all the same outputs as opal_output() (syslog, file, stdout, stderr), but for stdout/stderr, the output is sent to the HNP for processing and output. More on this below. * orte_show_help(): This function is a drop-in-replacement for opal_show_help(), with two differences in functionality: 1. the rendered text help message output is sent to the HNP for display (rather than outputting directly into the process' stderr stream) 1. the HNP detects duplicate help messages and does not display them (so that you don't see the same error message N times, once from each of your N MPI processes); instead, it counts "new" instances of the help message and displays a message every ~5 seconds when there are new ones ("I got X new copies of the help message...") opal_show_help and opal_output still exist, but they only output in the current process. The intent for the new orte_* functions is that they can apply job-level intelligence to the output. As such, we recommend that all new ORTE and OMPI code use the new orte_* functions, not thei opal_* functions. === New code === For ORTE and OMPI programmers, here's what you need to do differently in new code: * Do not include opal/util/show_help.h or opal/util/output.h. Instead, include orte/util/output.h (this one header file has declarations for both the orte_output() series of functions and orte_show_help()). * Effectively s/opal_output/orte_output/gi throughout your code. Note that orte_output_open() takes a slightly different argument list (as a way to pass data to the filtering stream -- see below), so you if explicitly call opal_output_open(), you'll need to slightly adapt to the new signature of orte_output_open(). * Literally s/opal_show_help/orte_show_help/. The function signature is identical. === Notes === * orte_output'ing to stream 0 will do similar to what opal_output'ing did, so leaving a hard-coded "0" as the first argument is safe. * For systems that do not use ORTE's RML or the HNP, the effect of orte_output_* and orte_show_help will be identical to their opal counterparts (the additional information passed to orte_output_open() will be lost!). Indeed, the orte_* functions simply become trivial wrappers to their opal_* counterparts. Note that we have not tested this; the code is simple but it is quite possible that we mucked something up. = Filter Framework = Messages sent view the new orte_* functions described above and messages output via the IOF on the HNP will now optionally be passed through a new "filter" framework before being output to stdout/stderr. The "filter" OPAL MCA framework is intended to allow preprocessing to messages before they are sent to their final destinations. The first component that was written in the filter framework was to create an XML stream, segregating all the messages into different XML tags, etc. This will allow 3rd party tools to read the stdout/stderr from the HNP and be able to know exactly what each text message is (e.g., a help message, another OMPI infrastructure message, stdout from the user process, stderr from the user process, etc.). Filtering is not active by default. Filter components must be specifically requested, such as: {{{ $ mpirun --mca filter xml ... }}} There can only be one filter component active. = New MCA Parameters = The new functionality described above introduces two new MCA parameters: * '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that help messages will be aggregated, as described above. If set to 0, all help messages will be displayed, even if they are duplicates (i.e., the original behavior). * '''orte_base_show_output_recursions''': An MCA parameter to help debug one of the known issues, described below. It is likely that this MCA parameter will disappear before v1.3 final. = Known Issues = * The XML filter component is not complete. The current output from this component is preliminary and not real XML. A bit more work needs to be done to configure.m4 search for an appropriate XML library/link it in/use it at run time. * There are possible recursion loops in the orte_output() and orte_show_help() functions -- e.g., if RML send calls orte_output() or orte_show_help(). We have some ideas how to fix these, but figured that it was ok to commit before feature freeze with known issues. The code currently contains sub-optimal workarounds so that this will not be a problem, but it would be good to actually solve the problem rather than have hackish workarounds before v1.3 final. This commit was SVN r18434.
2008-05-14 00:00:55 +04:00
goto error;
}
/* setup my session directory */
if (orte_create_session_dirs) {
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s setting up session dir with\n\ttmpdir: %s\n\thost %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
(NULL == orte_process_info.tmpdir_base) ? "UNDEF" : orte_process_info.tmpdir_base,
orte_process_info.nodename));
if (ORTE_SUCCESS != (ret = orte_session_dir(true,
orte_process_info.tmpdir_base,
orte_process_info.nodename, NULL,
ORTE_PROC_MY_NAME))) {
ORTE_ERROR_LOG(ret);
error = "orte_session_dir";
goto error;
}
/* Once the session directory location has been established, set
the opal_output hnp file location to be in the
proc-specific session directory. */
opal_output_set_output_file_info(orte_process_info.proc_session_dir,
"output-", NULL, NULL);
/* save my contact info in a file for others to find */
jobfam_dir = opal_dirname(orte_process_info.job_session_dir);
contact_path = opal_os_path(false, jobfam_dir, "contact.txt", NULL);
free(jobfam_dir);
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s writing contact file %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
contact_path));
if (ORTE_SUCCESS != (ret = orte_write_hnp_contact_file(contact_path))) {
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s writing contact file failed with error %s",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME),
ORTE_ERROR_NAME(ret)));
} else {
OPAL_OUTPUT_VERBOSE((2, orte_debug_output,
"%s wrote contact file",
ORTE_NAME_PRINT(ORTE_PROC_MY_NAME)));
}
free(contact_path);
}
/* setup the global job and node arrays */
orte_job_data = OBJ_NEW(opal_pointer_array_t);
if (ORTE_SUCCESS != (ret = opal_pointer_array_init(orte_job_data,
1,
ORTE_GLOBAL_ARRAY_MAX_SIZE,
1))) {
ORTE_ERROR_LOG(ret);
error = "setup job array";
goto error;
}
orte_node_pool = OBJ_NEW(opal_pointer_array_t);
if (ORTE_SUCCESS != (ret = opal_pointer_array_init(orte_node_pool,
ORTE_GLOBAL_ARRAY_BLOCK_SIZE,
ORTE_GLOBAL_ARRAY_MAX_SIZE,
ORTE_GLOBAL_ARRAY_BLOCK_SIZE))) {
ORTE_ERROR_LOG(ret);
error = "setup node array";
goto error;
}
orte_node_topologies = OBJ_NEW(opal_pointer_array_t);
if (ORTE_SUCCESS != (ret = opal_pointer_array_init(orte_node_topologies,
ORTE_GLOBAL_ARRAY_BLOCK_SIZE,
ORTE_GLOBAL_ARRAY_MAX_SIZE,
ORTE_GLOBAL_ARRAY_BLOCK_SIZE))) {
ORTE_ERROR_LOG(ret);
error = "setup node topologies array";
goto error;
}
/* Setup the job data object for the daemons */
/* create and store the job data object */
jdata = OBJ_NEW(orte_job_t);
jdata->jobid = ORTE_PROC_MY_NAME->jobid;
opal_pointer_array_set_item(orte_job_data, 0, jdata);
/* mark that the daemons have reported as we are the
* only ones in the system right now, and we definitely
* are running!
*/
jdata->state = ORTE_JOB_STATE_DAEMONS_REPORTED;
/* every job requires at least one app */
app = OBJ_NEW(orte_app_context_t);
opal_pointer_array_set_item(jdata->apps, 0, app);
jdata->num_apps++;
/* create and store a node object where we are */
node = OBJ_NEW(orte_node_t);
node->name = strdup(orte_process_info.nodename);
node->index = opal_pointer_array_set_item(orte_node_pool, 0, node);
#if OPAL_HAVE_HWLOC
/* point our topology to the one detected locally */
node->topology = opal_hwloc_topology;
/* add it to the array of known topologies */
opal_pointer_array_add(orte_node_topologies, opal_hwloc_topology);
#endif
/* create and store a proc object for us */
proc = OBJ_NEW(orte_proc_t);
proc->name.jobid = ORTE_PROC_MY_NAME->jobid;
proc->name.vpid = ORTE_PROC_MY_NAME->vpid;
proc->pid = orte_process_info.pid;
proc->rml_uri = orte_rml.get_contact_info();
proc->state = ORTE_PROC_STATE_RUNNING;
OBJ_RETAIN(node); /* keep accounting straight */
proc->node = node;
proc->nodename = node->name;
opal_pointer_array_set_item(jdata->procs, proc->name.vpid, proc);
/* record that the daemon (i.e., us) is on this node
* NOTE: we do not add the proc object to the node's
* proc array because we are not an application proc.
* Instead, we record it in the daemon field of the
* node object
*/
OBJ_RETAIN(proc); /* keep accounting straight */
node->daemon = proc;
node->daemon_launched = true;
node->state = ORTE_NODE_STATE_UP;
/* if we are to retain aliases, get ours */
if (orte_retain_aliases) {
opal_ifgetaliases(&node->alias);
/* add our own local name to it */
opal_argv_append_nosize(&node->alias, orte_process_info.nodename);
}
/* record that the daemon job is running */
jdata->num_procs = 1;
jdata->state = ORTE_JOB_STATE_RUNNING;
/* obviously, we have "reported" */
jdata->num_reported = 1;
/* setup the routed info - the selected routed component
* will know what to do.
*/
if (ORTE_SUCCESS != (ret = orte_routed.init_routes(ORTE_PROC_MY_NAME->jobid, NULL))) {
ORTE_ERROR_LOG(ret);
error = "orte_routed.init_routes";
goto error;
}
/* setup I/O forwarding system - must come after we init routes */
if (ORTE_SUCCESS != (ret = orte_iof_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_iof_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_iof_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_iof_base_select";
goto error;
}
/* setup the FileM */
if (ORTE_SUCCESS != (ret = orte_filem_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_filem_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_filem_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_filem_base_select";
goto error;
}
#if OPAL_ENABLE_FT_CR == 1
/*
* Setup the SnapC
*/
if (ORTE_SUCCESS != (ret = orte_snapc_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_snapc_base_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_snapc_base_select(ORTE_PROC_IS_HNP, !ORTE_PROC_IS_DAEMON))) {
ORTE_ERROR_LOG(ret);
error = "orte_snapc_base_select";
goto error;
}
/* For HNP, ORTE doesn't need the OPAL CR stuff */
opal_cr_set_enabled(false);
#else
opal_cr_set_enabled(false);
#endif
/*
* Initalize the CR setup
* Note: Always do this, even in non-FT builds.
* If we don't some user level tools may hang.
*/
if (ORTE_SUCCESS != (ret = orte_cr_init())) {
ORTE_ERROR_LOG(ret);
error = "orte_cr_init";
goto error;
}
/* setup the SENSOR framework */
if (ORTE_SUCCESS != (ret = orte_sensor_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_sensor_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_sensor_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_sensor_select";
goto error;
}
/* start the local sensors */
orte_sensor.start(ORTE_PROC_MY_NAME->jobid);
/* setup the dfs framework */
if (ORTE_SUCCESS != (ret = orte_dfs_base_open())) {
ORTE_ERROR_LOG(ret);
error = "orte_dfs_open";
goto error;
}
if (ORTE_SUCCESS != (ret = orte_dfs_base_select())) {
ORTE_ERROR_LOG(ret);
error = "orte_dfs_select";
goto error;
}
/* if a tool has launched us and is requesting event reports,
* then set its contact info into the comm system
*/
if (orte_report_events) {
if (ORTE_SUCCESS != (ret = orte_util_comm_connect_tool(orte_report_events_uri))) {
error = "could not connect to tool";
goto error;
}
}
#if !ORTE_ENABLE_PROGRESS_THREADS
/* We actually do *not* want an HNP to voluntarily yield() the
processor more than necessary. Orterun already blocks when
it is doing nothing, so it doesn't use any more CPU cycles than
it should; but when it *is* doing something, we do not want it
to be unnecessarily delayed because it voluntarily yielded the
processor in the middle of its work.
For example: when a message arrives at orterun, we want the
OS to wake us up in a timely fashion (which most OS's
seem good about doing) and then we want orterun to process
the message as fast as possible. If orterun yields and lets
aggressive MPI applications get the processor back, it may be a
long time before the OS schedules orterun to run again
(particularly if there is no IO event to wake it up). Hence,
routed OOB messages (for example) may be significantly delayed
before being delivered to MPI processes, which can be
problematic in some scenarios (e.g., COMM_SPAWN, BTL's that
require OOB messages for wireup, etc.). */
opal_progress_set_yield_when_idle(false);
#endif
return ORTE_SUCCESS;
error:
if (ORTE_ERR_SILENT != ret && !orte_report_silent_errors) {
orte_show_help("help-orte-runtime.txt",
"orte_init:startup:internal-failure",
true, error, ORTE_ERROR_NAME(ret), ret);
}
return ORTE_ERR_SILENT;
}
static int rte_finalize(void)
{
char *contact_path;
char *jobfam_dir;
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
if (signals_set) {
/* Remove the epipe handler */
opal_event_signal_del(&epipe_handler);
/* remove the term handler */
opal_event_del(&term_handler);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/** Remove the USR signal handlers */
opal_event_signal_del(&sigusr1_handler);
opal_event_signal_del(&sigusr2_handler);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
if (orte_forward_job_control) {
opal_event_signal_del(&sigtstp_handler);
opal_event_signal_del(&sigcont_handler);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
}
signals_set = false;
}
/* close the dfs */
orte_dfs_base_close();
/* stop the local sensors */
orte_sensor.stop(ORTE_PROC_MY_NAME->jobid);
/* remove my contact info file, if we have session directories */
if (NULL != orte_process_info.job_session_dir) {
jobfam_dir = opal_dirname(orte_process_info.job_session_dir);
contact_path = opal_os_path(false, jobfam_dir, "contact.txt", NULL);
free(jobfam_dir);
unlink(contact_path);
free(contact_path);
}
/* output any lingering stdout/err data */
orte_iof_base_close();
fflush(stdout);
fflush(stderr);
/* ensure we scrub the session directory tree */
orte_session_dir_cleanup(ORTE_JOBID_WILDCARD);
/* close the xml output file, if open */
if (orte_xml_output) {
fprintf(orte_xml_fp, "</mpirun>\n");
fflush(orte_xml_fp);
if (stdout != orte_xml_fp) {
fclose(orte_xml_fp);
}
}
return ORTE_SUCCESS;
}
static void rte_abort(int status, bool report)
{
/* do NOT do a normal finalize as this will very likely
* hang the process. We are aborting due to an abnormal condition
* that precludes normal cleanup
*
* We do need to do the following bits to make sure we leave a
* clean environment. Taken from orte_finalize():
* - Assume errmgr cleans up child processes before we exit.
*/
/* CRS cleanup since it may have a named pipe and thread active */
orte_cr_finalize();
/* ensure we scrub the session directory tree */
orte_session_dir_cleanup(ORTE_JOBID_WILDCARD);
/* - Clean out the global structures
* (not really necessary, but good practice)
*/
orte_proc_info_finalize();
/* just exit */
exit(status);
}
static void clean_abort(int fd, short flags, void *arg)
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
{
/* if we have already ordered this once, don't keep
* doing it to avoid race conditions
*/
if (opal_atomic_trylock(&orte_abort_inprogress_lock)) { /* returns 1 if already locked */
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
if (forcibly_die) {
/* kill any local procs */
orte_odls.kill_local_procs(NULL);
/* whack any lingering session directory files from our jobs */
orte_session_dir_cleanup(ORTE_JOBID_WILDCARD);
/* cleanup our data server */
orte_data_server_finalize();
/* exit with a non-zero status */
exit(ORTE_ERROR_DEFAULT_EXIT_CODE);
}
fprintf(stderr, "%s: abort is already in progress...hit ctrl-c again to forcibly terminate\n\n", orte_basename);
forcibly_die = true;
/* reset the event */
opal_event_add(&term_handler, NULL);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
return;
}
/* set the global abnormal exit flag so we know not to
* use the standard xcast for terminating orteds
*/
orte_abnormal_term_ordered = true;
/* ensure that the forwarding of stdin stops */
orte_job_term_ordered = true;
/* tell us to be quiet - hey, the user killed us with a ctrl-c,
* so need to tell them that!
*/
orte_execute_quiet = true;
if (!orte_never_launched) {
/* cleanup our data server */
orte_data_server_finalize();
}
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/* We are in an event handler; the job completed procedure
will delete the signal handler that is currently running
(which is a Bad Thing), so we can't call it directly.
Instead, we have to exit this handler and setup to call
job_completed() after this. */
ORTE_TERMINATE(ORTE_ERROR_DEFAULT_EXIT_CODE);
/* reset the event */
opal_event_add(&term_handler, NULL);
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
}
static struct timeval current, last={0,0};
static bool first = true;
/*
* Attempt to terminate the job and wait for callback indicating
* the job has been aborted.
*/
static void abort_signal_callback(int fd)
{
uint8_t foo = 1;
char *msg = "Abort is in progress...hit ctrl-c again within 5 seconds to forcibly terminate\n\n";
/* if this is the first time thru, just get
* the current time
*/
if (first) {
first = false;
gettimeofday(&current, NULL);
} else {
/* get the current time */
gettimeofday(&current, NULL);
/* if this is within 5 seconds of the
* last time we were called, then just
* exit - we are probably stuck
*/
if ((current.tv_sec - last.tv_sec) < 5) {
exit(1);
}
write(1, (void*)msg, strlen(msg));
}
/* save the time */
last.tv_sec = current.tv_sec;
/* tell the event lib to attempt to abnormally terminate */
write(term_pipe[1], &foo, 1);
}
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
/**
* Deal with sigpipe errors
*/
static int sigpipe_error_count=0;
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
static void epipe_signal_callback(int fd, short flags, void *arg)
{
sigpipe_error_count++;
if (10 < sigpipe_error_count) {
/* time to abort */
opal_output(0, "%s: SIGPIPE detected on fd %d - aborting", orte_basename, fd);
clean_abort(0, 0, NULL);
}
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
return;
}
/**
* Pass user signals to the remote application processes
*/
static void signal_forward_callback(int fd, short event, void *arg)
{
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
opal_event_t *signal = (opal_event_t*)arg;
Start reducing our dependency on the event library by removing at least one instance where we use it to redirect the program counter. Rolf reported occasional hangs of mpirun in very specific circumstances after all daemons were done. A review of MTT results indicates this may have been happening more generally in a small fraction of cases. The problem was tracked to use of the grpcomm.onesided_barrier to control daemon/mpirun termination. This relied on messaging -and- required that the program counter jump from the errmgr back to grpcomm. On rare occasions, this jump did not occur, causing mpirun to hang. This patch looks more invasive than it is - most of the affected files simply had one or two lines removed. The essence of the change is: * pulled the job_complete and quit routines out of orterun and orted_main and put them in a common place * modified the errmgr to directly call the new routines when termination is detected * removed the grpcomm.onesided_barrier and its associated RML tag * add a new "num_routes" API to the routed framework that reports back the number of dependent routes. When route_lost is called, the daemon's list of "children" is checked and adjusted if that route went to a "leaf" in the routing tree * use connection termination between daemons to track rollup of the daemon tree. Daemons and HNP now terminate once num_routes returns zero Also picked up in this commit is the addition of a new bool flag to the app_context struct, and increasing the job_control field from 8 to 16 bits. Both trivial. This commit was SVN r23429.
2010-07-18 01:03:27 +04:00
int signum, ret;
signum = OPAL_EVENT_SIGNAL(signal);
if (!orte_execute_quiet){
fprintf(stderr, "%s: Forwarding signal %d to job\n",
orte_basename, signum);
}
/** send the signal out to the processes, including any descendants */
if (ORTE_SUCCESS != (ret = orte_plm.signal_job(ORTE_JOBID_WILDCARD, signum))) {
fprintf(stderr, "Signal %d could not be sent to the job (returned %d)",
signum, ret);
}
}