1
1
openmpi/orte/mca/oob/base/oob_base_open.c

137 строки
4.8 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "orte_config.h"
#include "orte/orte_constants.h"
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
#include "opal/mca/mca.h"
#include "opal/mca/base/base.h"
#include "opal/util/output.h"
#include "opal/mca/base/mca_base_param.h"
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
#include "opal/threads/condition.h"
#include "orte/mca/oob/oob.h"
/*
* The following file was created by configure. It contains extern
* statements and the definition of an array of pointers to each
- massive change for module<-->component name fixes throughout the code base. - many (most) mca type names have "component" or "module" in them, as relevant, just to further distinguish the difference between component data/actions and module data/actions. All developers are encouraged to perpetuate this convention when you create types that are specific to a framework, component, or module - did very little to entire framework (just the basics to make it compile) because it's just about to be almost entirely replaced - ditto for io / romio - did not work on elan or ib components; have to commit and then convert those on a different machine with the right libraries and headers - renamed a bunch of *_module.c files to *_component.c and *module*c to *component*c (a few still remain, e.g., ptl/ib, ptl/elan, etc.) - modified autogen/configure/build process to match new filenames (e.g., output static-components.h instead of static-modules.h) - removed DOS-style cr/lf stuff in ns/ns.h - added newline to end of file src/util/numtostr.h - removed some redundant error checking in the top-level topo functions - added a few {} here and there where people "forgot" to put them in for 1 line blocks ;-) - removed a bunch of MPI_* types from mca header files (replaced with corresponding ompi_* types) - all the ptl components had version numbers in their structs; removed - converted a few more elements in the MCA base to use the OBJ interface -- removed some old manual reference counting kruft This commit was SVN r1830.
2004-08-02 04:24:22 +04:00
* component's public mca_base_component_t struct.
*/
#include "orte/mca/oob/base/static-components.h"
/*
* Global variables
*/
mca_oob_t mca_oob;
int mca_oob_base_output = -1;
opal_list_t mca_oob_base_components;
opal_list_t mca_oob_base_modules;
opal_list_t mca_oob_base_exception_handlers;
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
opal_mutex_t orte_oob_xcast_mutex;
opal_condition_t orte_oob_xcast_cond;
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
int orte_oob_xcast_linear_xover;
int orte_oob_xcast_binomial_xover;
orte_std_cntr_t orte_oob_xcast_num_active;
bool orte_oob_base_already_opened = false;
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
#define ORTE_OOB_XCAST_LINEAR_XOVER_DEFAULT 10
#define ORTE_OOB_XCAST_BINOMIAL_XOVER_DEFAULT INT_MAX
/**
- massive change for module<-->component name fixes throughout the code base. - many (most) mca type names have "component" or "module" in them, as relevant, just to further distinguish the difference between component data/actions and module data/actions. All developers are encouraged to perpetuate this convention when you create types that are specific to a framework, component, or module - did very little to entire framework (just the basics to make it compile) because it's just about to be almost entirely replaced - ditto for io / romio - did not work on elan or ib components; have to commit and then convert those on a different machine with the right libraries and headers - renamed a bunch of *_module.c files to *_component.c and *module*c to *component*c (a few still remain, e.g., ptl/ib, ptl/elan, etc.) - modified autogen/configure/build process to match new filenames (e.g., output static-components.h instead of static-modules.h) - removed DOS-style cr/lf stuff in ns/ns.h - added newline to end of file src/util/numtostr.h - removed some redundant error checking in the top-level topo functions - added a few {} here and there where people "forgot" to put them in for 1 line blocks ;-) - removed a bunch of MPI_* types from mca header files (replaced with corresponding ompi_* types) - all the ptl components had version numbers in their structs; removed - converted a few more elements in the MCA base to use the OBJ interface -- removed some old manual reference counting kruft This commit was SVN r1830.
2004-08-02 04:24:22 +04:00
* Function for finding and opening either all MCA components, or the one
* that was specifically requested via a MCA parameter.
*/
int mca_oob_base_open(void)
{
int param, value;
char *mode;
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
/* Sanity check. This may be able to be removed when the rml/oob
interface is re-worked (the current infrastructure may invoke
this function twice: once as a standalone, and once via the rml
oob component). */
if (orte_oob_base_already_opened) {
return ORTE_SUCCESS;
}
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
/* initialize the condition variables for xcast */
OBJ_CONSTRUCT(&orte_oob_xcast_mutex, opal_mutex_t);
OBJ_CONSTRUCT(&orte_oob_xcast_cond, opal_condition_t);
orte_oob_xcast_num_active = 0;
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
/* register parameters */
param = mca_base_param_reg_int_name("oob", "base_verbose",
"Verbosity level for the oob framework",
false, false, 0, &value);
if (value != 0) {
mca_oob_base_output = opal_output_open(NULL);
} else {
mca_oob_base_output = -1;
}
param = mca_base_param_reg_int_name("oob", "xcast_linear_xover",
"Number of daemons where use of linear xcast mode is to begin",
false, false, ORTE_OOB_XCAST_LINEAR_XOVER_DEFAULT, &orte_oob_xcast_linear_xover);
param = mca_base_param_reg_int_name("oob", "xcast_binomial_xover",
"Number of daemons where use of binomial xcast mode is to begin",
false, false, ORTE_OOB_XCAST_BINOMIAL_XOVER_DEFAULT, &orte_oob_xcast_binomial_xover);
param = mca_base_param_reg_string_name("oob", "xcast_mode",
"Select xcast mode (\"linear\" | \"binomial\" | \"direct\")",
false, false, "none", &mode);
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
if (0 == strcmp(mode, "binomial")) {
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
orte_oob_xcast_binomial_xover = 0;
orte_oob_xcast_linear_xover = 0;
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
} else if (0 == strcmp(mode, "linear")) {
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
orte_oob_xcast_linear_xover = 0;
orte_oob_xcast_binomial_xover = INT_MAX;
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
} else if (0 == strcmp(mode, "direct")) {
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
orte_oob_xcast_binomial_xover = INT_MAX;
orte_oob_xcast_linear_xover = INT_MAX;
} else if (0 != strcmp(mode, "none")) {
opal_output(0, "oob_xcast_mode: unknown option %s - using defaults", mode);
}
/* Open up all available components */
OBJ_CONSTRUCT(&mca_oob_base_components, opal_list_t);
OBJ_CONSTRUCT(&mca_oob_base_modules, opal_list_t);
OBJ_CONSTRUCT(&mca_oob_base_exception_handlers, opal_list_t);
if (ORTE_SUCCESS !=
mca_base_components_open("oob", mca_oob_base_output,
mca_oob_base_static_components,
&mca_oob_base_components, true)) {
Commit the orted-failed-to-start code. This correctly causes the system to detect the failure of an orted to start and allows the system to terminate all procs/orteds that *did* start. The primary change that underlies all this is in the OOB. Specifically, the problem in the code until now has been that the OOB attempts to resolve an address when we call the "send" to an unknown recipient. The OOB would then wait forever if that recipient never actually started (and hence, never reported back its OOB contact info). In the case of an orted that failed to start, we would correctly detect that the orted hadn't started, but then we would attempt to order all orteds (including the one that failed to start) to die. This would cause the OOB to "hang" the system. Unfortunately, revising how the OOB resolves addresses introduced a number of additional problems. Specifically, and most troublesome, was the fact that comm_spawn involved the immediate transmission of the rendezvous point from parent-to-child after the child was spawned. The current code used the OOB address resolution as a "barrier" - basically, the parent would attempt to send the info to the child, and then "hold" there until the child's contact info had arrived (meaning the child had started) and the send could be completed. Note that this also caused comm_spawn to "hang" the entire system if the child never started... The app-failed-to-start helped improve that behavior - this code provides additional relief. With this change, the OOB will return an ADDRESSEE_UNKNOWN error if you attempt to send to a recipient whose contact info isn't already in the OOB's hash tables. To resolve comm_spawn issues, we also now force the cross-sharing of connection info between parent and child jobs during spawn. Finally, to aid in setting triggers to the right values, we introduce the "arith" API for the GPR. This function allows you to atomically change the value in a registry location (either divide, multiply, add, or subtract) by the provided operand. It is equivalent to first fetching the value using a "get", then modifying it, and then putting the result back into the registry via a "put". This commit was SVN r14711.
2007-05-21 22:31:28 +04:00
return ORTE_ERROR;
}
/* All done */
orte_oob_base_already_opened = true;
return ORTE_SUCCESS;
}