1
1
openmpi/orte/mca/plm/slurm/plm_slurm_module.c

710 строки
24 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2007 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2006-2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2007 Los Alamos National Security, LLC. All rights
* reserved.
* $COPYRIGHT$
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
*
* Additional copyrights may follow
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
*
* $HEADER$
*
* These symbols are in a file by themselves to provide nice linker
* semantics. Since linkers generally pull in symbols by object
* files, keeping these symbols as the only symbols in this file
* prevents utility programs such as "ompi_info" from having to import
* entire components just to query their version and parameters.
*/
#include "orte_config.h"
#include "orte/constants.h"
#include "orte/types.h"
#include <sys/types.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <signal.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include "opal/mca/installdirs/installdirs.h"
#include "opal/util/argv.h"
#include "opal/util/output.h"
#include "opal/util/opal_environ.h"
#include "opal/util/path.h"
#include "opal/util/basename.h"
#include "opal/mca/base/mca_base_param.h"
#include "orte/util/show_help.h"
#include "orte/util/name_fns.h"
#include "orte/runtime/orte_globals.h"
#include "orte/runtime/runtime.h"
#include "orte/runtime/orte_wait.h"
#include "orte/mca/errmgr/errmgr.h"
#include "orte/mca/rmaps/rmaps.h"
#include "orte/mca/plm/plm.h"
#include "orte/mca/plm/base/plm_private.h"
#include "plm_slurm.h"
/*
* Local functions
*/
static int plm_slurm_init(void);
static int plm_slurm_launch_job(orte_job_t *jdata);
static int plm_slurm_terminate_job(orte_jobid_t jobid);
static int plm_slurm_terminate_orteds(void);
static int plm_slurm_signal_job(orte_jobid_t jobid, int32_t signal);
static int plm_slurm_finalize(void);
static int plm_slurm_start_proc(int argc, char **argv, char **env,
char *prefix);
/*
* Global variable
*/
orte_plm_base_module_1_0_0_t orte_plm_slurm_module = {
plm_slurm_init,
orte_plm_base_set_hnp_name,
plm_slurm_launch_job,
NULL,
plm_slurm_terminate_job,
plm_slurm_terminate_orteds,
plm_slurm_signal_job,
plm_slurm_finalize
};
/*
* Local variables
*/
static pid_t primary_srun_pid = 0;
static bool primary_pid_set = false;
static orte_jobid_t active_job = ORTE_JOBID_INVALID;
static bool launching_daemons;
static bool local_launch_available = false;
/**
* Init the module
*/
static int plm_slurm_init(void)
{
int rc;
if (ORTE_SUCCESS != (rc = orte_plm_base_comm_start())) {
ORTE_ERROR_LOG(rc);
}
if (ORTE_SUCCESS == orte_plm_base_rsh_launch_agent_setup()) {
local_launch_available = true;
}
return rc;
}
/* When working in this function, ALWAYS jump to "cleanup" if
* you encounter an error so that orterun will be woken up and
* the job can cleanly terminate
*/
static int plm_slurm_launch_job(orte_job_t *jdata)
{
orte_app_context_t **apps;
orte_node_t **nodes;
orte_std_cntr_t n;
orte_job_map_t *map;
char *jobid_string = NULL;
char *param;
char **argv = NULL;
int argc;
int rc;
Per the July technical meeting: Standardize the handling of the orte launch agent option across PLMs. This has been a consistent complaint I have received - each PLM would register its own MCA param to get input on the launch agent for remote nodes (in fact, one or two didn't, but most did). This would then get handled in various and contradictory ways. Some PLMs would accept only a one-word input. Others accepted multi-word args such as "valgrind orted", but then some would error by putting any prefix specified on the cmd line in front of the incorrect argument. For example, while using the rsh launcher, if you specified "valgrind orted" as your launch agent and had "--prefix foo" on you cmd line, you would attempt to execute "ssh foo/valgrind orted" - which obviously wouldn't work. This was all -very- confusing to users, who had to know which PLM was being used so they could even set the right mca param in the first place! And since we don't warn about non-recognized or non-used mca params, half of the time they would wind up not doing what they thought they were telling us to do. To solve this problem, we did the following: 1. removed all mca params from the individual plms for the launch agent 2. added a new mca param "orte_launch_agent" for this purpose. To further simplify for users, this comes with a new cmd line option "--launch-agent" that can take a multi-word string argument. The value of the param defaults to "orted". 3. added a PLM base function that processes the orte_launch_agent value and adds the contents to a provided argv array. This can subsequently be harvested at-will to handle multi-word values 4. modified the PLMs to use this new function. All the PLMs except for the rsh PLM required very minor change - just called the function and moved on. The rsh PLM required much larger changes as - because of the rsh/ssh cmd line limitations - we had to correctly prepend any provided prefix to the correct argv entry. 5. added a new opal_argv_join_range function that allows the caller to "join" argv entries between two specified indices Please let me know of any problems. I tried to make this as clean as possible, but cannot compile all PLMs to ensure all is correct. This commit was SVN r19097.
2008-07-30 22:26:24 +04:00
char *tmp;
char** env = NULL;
char* var;
char *nodelist_flat;
char **nodelist_argv;
int nodelist_argc;
char *name_string;
char **custom_strings;
int num_args, i;
char *cur_prefix;
struct timeval launchstart, launchstop;
int proc_vpid_index;
orte_jobid_t failed_job;
bool failed_launch=true;
if (jdata->controls & ORTE_JOB_CONTROL_LOCAL_SLAVE) {
/* if this is a request to launch a local slave,
* then we will not be launching an orted - we will
* directly ssh the slave process itself. No mapping
* is performed to support this - the caller must
* provide all the info required to launch the job,
* including the target hosts
*/
if (!local_launch_available) {
/* if we can't support this, then abort */
orte_show_help("help-plm-slurm.txt", "no-local-slave-support", true);
return ORTE_ERR_FAILED_TO_START;
}
return orte_plm_base_local_slave_launch(jdata);
}
/* if we are timing, record the start time */
if (orte_timing) {
gettimeofday(&orte_plm_globals.daemonlaunchstart, NULL);
}
/* flag the daemons as failing by default */
failed_job = ORTE_PROC_MY_NAME->jobid;
if (orte_timing) {
if (0 != gettimeofday(&launchstart, NULL)) {
opal_output(0, "plm_slurm: could not obtain job start time");
launchstart.tv_sec = 0;
launchstart.tv_usec = 0;
}
}
/* indicate the state of the launch */
launching_daemons = true;
/* create a jobid for this job */
if (ORTE_SUCCESS != (rc = orte_plm_base_create_jobid(&jdata->jobid))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: launching job %s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
orte_util_print_jobids(jdata->jobid)));
/* setup the job */
if (ORTE_SUCCESS != (rc = orte_plm_base_setup_job(jdata))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
/* set the active jobid */
active_job = jdata->jobid;
/* Get the map for this job */
if (NULL == (map = orte_rmaps.get_job_map(active_job))) {
ORTE_ERROR_LOG(ORTE_ERR_NOT_FOUND);
rc = ORTE_ERR_NOT_FOUND;
goto cleanup;
}
apps = (orte_app_context_t**)jdata->apps->addr;
nodes = (orte_node_t**)map->nodes->addr;
if (0 == map->num_new_daemons) {
/* no new daemons required - just launch apps */
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: no new daemons to launch",
orte_util_print_name_args(ORTE_PROC_MY_NAME)));
goto launch_apps;
}
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
/* need integer value for command line parameter */
asprintf(&jobid_string, "%lu", (unsigned long) jdata->jobid);
/*
* start building argv array
*/
argv = NULL;
argc = 0;
/*
* SLURM srun OPTIONS
*/
/* add the srun command */
opal_argv_append(&argc, &argv, "srun");
/* Append user defined arguments to srun */
if ( NULL != mca_plm_slurm_component.custom_args ) {
custom_strings = opal_argv_split(mca_plm_slurm_component.custom_args, ' ');
num_args = opal_argv_count(custom_strings);
for (i = 0; i < num_args; ++i) {
opal_argv_append(&argc, &argv, custom_strings[i]);
}
opal_argv_free(custom_strings);
}
asprintf(&tmp, "--nodes=%lu", (unsigned long) map->num_new_daemons);
opal_argv_append(&argc, &argv, tmp);
free(tmp);
asprintf(&tmp, "--ntasks=%lu", (unsigned long) map->num_new_daemons);
opal_argv_append(&argc, &argv, tmp);
free(tmp);
/* alert us if any orteds die during startup */
opal_argv_append(&argc, &argv, "--kill-on-bad-exit");
/* create nodelist */
nodelist_argv = NULL;
nodelist_argc = 0;
for (n=0; n < map->num_nodes; n++ ) {
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
/* if the daemon already exists on this node, then
* don't include it
*/
if (nodes[n]->daemon_launched) {
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
continue;
}
/* otherwise, add it to the list of nodes upon which
* we need to launch a daemon
*/
opal_argv_append(&nodelist_argc, &nodelist_argv, nodes[n]->name);
}
if (0 == opal_argv_count(nodelist_argv)) {
This commit represents a bunch of work on a Mercurial side branch. As such, the commit message back to the master SVN repository is fairly long. = ORTE Job-Level Output Messages = Add two new interfaces that should be used for all new code throughout the ORTE and OMPI layers (we already make the search-and-replace on the existing ORTE / OMPI layers): * orte_output(): (and corresponding friends ORTE_OUTPUT, orte_output_verbose, etc.) This function sends the output directly to the HNP for processing as part of a job-specific output channel. It supports all the same outputs as opal_output() (syslog, file, stdout, stderr), but for stdout/stderr, the output is sent to the HNP for processing and output. More on this below. * orte_show_help(): This function is a drop-in-replacement for opal_show_help(), with two differences in functionality: 1. the rendered text help message output is sent to the HNP for display (rather than outputting directly into the process' stderr stream) 1. the HNP detects duplicate help messages and does not display them (so that you don't see the same error message N times, once from each of your N MPI processes); instead, it counts "new" instances of the help message and displays a message every ~5 seconds when there are new ones ("I got X new copies of the help message...") opal_show_help and opal_output still exist, but they only output in the current process. The intent for the new orte_* functions is that they can apply job-level intelligence to the output. As such, we recommend that all new ORTE and OMPI code use the new orte_* functions, not thei opal_* functions. === New code === For ORTE and OMPI programmers, here's what you need to do differently in new code: * Do not include opal/util/show_help.h or opal/util/output.h. Instead, include orte/util/output.h (this one header file has declarations for both the orte_output() series of functions and orte_show_help()). * Effectively s/opal_output/orte_output/gi throughout your code. Note that orte_output_open() takes a slightly different argument list (as a way to pass data to the filtering stream -- see below), so you if explicitly call opal_output_open(), you'll need to slightly adapt to the new signature of orte_output_open(). * Literally s/opal_show_help/orte_show_help/. The function signature is identical. === Notes === * orte_output'ing to stream 0 will do similar to what opal_output'ing did, so leaving a hard-coded "0" as the first argument is safe. * For systems that do not use ORTE's RML or the HNP, the effect of orte_output_* and orte_show_help will be identical to their opal counterparts (the additional information passed to orte_output_open() will be lost!). Indeed, the orte_* functions simply become trivial wrappers to their opal_* counterparts. Note that we have not tested this; the code is simple but it is quite possible that we mucked something up. = Filter Framework = Messages sent view the new orte_* functions described above and messages output via the IOF on the HNP will now optionally be passed through a new "filter" framework before being output to stdout/stderr. The "filter" OPAL MCA framework is intended to allow preprocessing to messages before they are sent to their final destinations. The first component that was written in the filter framework was to create an XML stream, segregating all the messages into different XML tags, etc. This will allow 3rd party tools to read the stdout/stderr from the HNP and be able to know exactly what each text message is (e.g., a help message, another OMPI infrastructure message, stdout from the user process, stderr from the user process, etc.). Filtering is not active by default. Filter components must be specifically requested, such as: {{{ $ mpirun --mca filter xml ... }}} There can only be one filter component active. = New MCA Parameters = The new functionality described above introduces two new MCA parameters: * '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that help messages will be aggregated, as described above. If set to 0, all help messages will be displayed, even if they are duplicates (i.e., the original behavior). * '''orte_base_show_output_recursions''': An MCA parameter to help debug one of the known issues, described below. It is likely that this MCA parameter will disappear before v1.3 final. = Known Issues = * The XML filter component is not complete. The current output from this component is preliminary and not real XML. A bit more work needs to be done to configure.m4 search for an appropriate XML library/link it in/use it at run time. * There are possible recursion loops in the orte_output() and orte_show_help() functions -- e.g., if RML send calls orte_output() or orte_show_help(). We have some ideas how to fix these, but figured that it was ok to commit before feature freeze with known issues. The code currently contains sub-optimal workarounds so that this will not be a problem, but it would be good to actually solve the problem rather than have hackish workarounds before v1.3 final. This commit was SVN r18434.
2008-05-14 00:00:55 +04:00
orte_show_help("help-plm-slurm.txt", "no-hosts-in-list", true);
rc = ORTE_ERR_FAILED_TO_START;
goto cleanup;
}
nodelist_flat = opal_argv_join(nodelist_argv, ',');
opal_argv_free(nodelist_argv);
asprintf(&tmp, "--nodelist=%s", nodelist_flat);
opal_argv_append(&argc, &argv, tmp);
free(tmp);
OPAL_OUTPUT_VERBOSE((2, orte_plm_globals.output,
"%s plm:slurm: launching on nodes %s",
orte_util_print_name_args(ORTE_PROC_MY_NAME), nodelist_flat));
/*
* ORTED OPTIONS
*/
/* add the daemon command (as specified by user) */
Per the July technical meeting: Standardize the handling of the orte launch agent option across PLMs. This has been a consistent complaint I have received - each PLM would register its own MCA param to get input on the launch agent for remote nodes (in fact, one or two didn't, but most did). This would then get handled in various and contradictory ways. Some PLMs would accept only a one-word input. Others accepted multi-word args such as "valgrind orted", but then some would error by putting any prefix specified on the cmd line in front of the incorrect argument. For example, while using the rsh launcher, if you specified "valgrind orted" as your launch agent and had "--prefix foo" on you cmd line, you would attempt to execute "ssh foo/valgrind orted" - which obviously wouldn't work. This was all -very- confusing to users, who had to know which PLM was being used so they could even set the right mca param in the first place! And since we don't warn about non-recognized or non-used mca params, half of the time they would wind up not doing what they thought they were telling us to do. To solve this problem, we did the following: 1. removed all mca params from the individual plms for the launch agent 2. added a new mca param "orte_launch_agent" for this purpose. To further simplify for users, this comes with a new cmd line option "--launch-agent" that can take a multi-word string argument. The value of the param defaults to "orted". 3. added a PLM base function that processes the orte_launch_agent value and adds the contents to a provided argv array. This can subsequently be harvested at-will to handle multi-word values 4. modified the PLMs to use this new function. All the PLMs except for the rsh PLM required very minor change - just called the function and moved on. The rsh PLM required much larger changes as - because of the rsh/ssh cmd line limitations - we had to correctly prepend any provided prefix to the correct argv entry. 5. added a new opal_argv_join_range function that allows the caller to "join" argv entries between two specified indices Please let me know of any problems. I tried to make this as clean as possible, but cannot compile all PLMs to ensure all is correct. This commit was SVN r19097.
2008-07-30 22:26:24 +04:00
orte_plm_base_setup_orted_cmd(&argc, &argv);
/* Add basic orted command line options, including debug flags */
orte_plm_base_orted_append_basic_args(&argc, &argv,
"slurm",
&proc_vpid_index,
false);
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
/* tell the new daemons the base of the name list so they can compute
* their own name on the other end
*/
rc = orte_util_convert_vpid_to_string(&name_string, map->daemon_vpid_start);
if (ORTE_SUCCESS != rc) {
opal_output(0, "plm_slurm: unable to get daemon vpid as string");
goto cleanup;
}
free(argv[proc_vpid_index]);
argv[proc_vpid_index] = strdup(name_string);
free(name_string);
if (0 < opal_output_get_verbosity(orte_plm_globals.output)) {
param = opal_argv_join(argv, ' ');
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: final top-level argv:\n\t%s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
(NULL == param) ? "NULL" : param));
if (NULL != param) free(param);
}
/* Copy the prefix-directory specified in the
corresponding app_context. If there are multiple,
different prefix's in the app context, complain (i.e., only
allow one --prefix option for the entire slurm run -- we
don't support different --prefix'es for different nodes in
the SLURM plm) */
cur_prefix = NULL;
for (n=0; n < jdata->num_apps; n++) {
char * app_prefix_dir = apps[n]->prefix_dir;
/* Check for already set cur_prefix_dir -- if different,
complain */
if (NULL != app_prefix_dir) {
if (NULL != cur_prefix &&
0 != strcmp (cur_prefix, app_prefix_dir)) {
This commit represents a bunch of work on a Mercurial side branch. As such, the commit message back to the master SVN repository is fairly long. = ORTE Job-Level Output Messages = Add two new interfaces that should be used for all new code throughout the ORTE and OMPI layers (we already make the search-and-replace on the existing ORTE / OMPI layers): * orte_output(): (and corresponding friends ORTE_OUTPUT, orte_output_verbose, etc.) This function sends the output directly to the HNP for processing as part of a job-specific output channel. It supports all the same outputs as opal_output() (syslog, file, stdout, stderr), but for stdout/stderr, the output is sent to the HNP for processing and output. More on this below. * orte_show_help(): This function is a drop-in-replacement for opal_show_help(), with two differences in functionality: 1. the rendered text help message output is sent to the HNP for display (rather than outputting directly into the process' stderr stream) 1. the HNP detects duplicate help messages and does not display them (so that you don't see the same error message N times, once from each of your N MPI processes); instead, it counts "new" instances of the help message and displays a message every ~5 seconds when there are new ones ("I got X new copies of the help message...") opal_show_help and opal_output still exist, but they only output in the current process. The intent for the new orte_* functions is that they can apply job-level intelligence to the output. As such, we recommend that all new ORTE and OMPI code use the new orte_* functions, not thei opal_* functions. === New code === For ORTE and OMPI programmers, here's what you need to do differently in new code: * Do not include opal/util/show_help.h or opal/util/output.h. Instead, include orte/util/output.h (this one header file has declarations for both the orte_output() series of functions and orte_show_help()). * Effectively s/opal_output/orte_output/gi throughout your code. Note that orte_output_open() takes a slightly different argument list (as a way to pass data to the filtering stream -- see below), so you if explicitly call opal_output_open(), you'll need to slightly adapt to the new signature of orte_output_open(). * Literally s/opal_show_help/orte_show_help/. The function signature is identical. === Notes === * orte_output'ing to stream 0 will do similar to what opal_output'ing did, so leaving a hard-coded "0" as the first argument is safe. * For systems that do not use ORTE's RML or the HNP, the effect of orte_output_* and orte_show_help will be identical to their opal counterparts (the additional information passed to orte_output_open() will be lost!). Indeed, the orte_* functions simply become trivial wrappers to their opal_* counterparts. Note that we have not tested this; the code is simple but it is quite possible that we mucked something up. = Filter Framework = Messages sent view the new orte_* functions described above and messages output via the IOF on the HNP will now optionally be passed through a new "filter" framework before being output to stdout/stderr. The "filter" OPAL MCA framework is intended to allow preprocessing to messages before they are sent to their final destinations. The first component that was written in the filter framework was to create an XML stream, segregating all the messages into different XML tags, etc. This will allow 3rd party tools to read the stdout/stderr from the HNP and be able to know exactly what each text message is (e.g., a help message, another OMPI infrastructure message, stdout from the user process, stderr from the user process, etc.). Filtering is not active by default. Filter components must be specifically requested, such as: {{{ $ mpirun --mca filter xml ... }}} There can only be one filter component active. = New MCA Parameters = The new functionality described above introduces two new MCA parameters: * '''orte_base_help_aggregate''': Defaults to 1 (true), meaning that help messages will be aggregated, as described above. If set to 0, all help messages will be displayed, even if they are duplicates (i.e., the original behavior). * '''orte_base_show_output_recursions''': An MCA parameter to help debug one of the known issues, described below. It is likely that this MCA parameter will disappear before v1.3 final. = Known Issues = * The XML filter component is not complete. The current output from this component is preliminary and not real XML. A bit more work needs to be done to configure.m4 search for an appropriate XML library/link it in/use it at run time. * There are possible recursion loops in the orte_output() and orte_show_help() functions -- e.g., if RML send calls orte_output() or orte_show_help(). We have some ideas how to fix these, but figured that it was ok to commit before feature freeze with known issues. The code currently contains sub-optimal workarounds so that this will not be a problem, but it would be good to actually solve the problem rather than have hackish workarounds before v1.3 final. This commit was SVN r18434.
2008-05-14 00:00:55 +04:00
orte_show_help("help-plm-slurm.txt", "multiple-prefixes",
true, cur_prefix, app_prefix_dir);
return ORTE_ERR_FATAL;
}
/* If not yet set, copy it; iff set, then it's the
* same anyway
*/
if (NULL == cur_prefix) {
cur_prefix = strdup(app_prefix_dir);
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: Set prefix:%s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
cur_prefix));
}
}
}
/* setup environment */
env = opal_argv_copy(orte_launch_environ);
/* add the nodelist */
var = mca_base_param_environ_variable("orte", "slurm", "nodelist");
opal_setenv(var, nodelist_flat, true, &env);
free(nodelist_flat);
free(var);
/* enable local launch by the orteds */
var = mca_base_param_environ_variable("plm", NULL, NULL);
opal_setenv(var, "rsh", true, &env);
free(var);
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 17:28:54 +04:00
/* exec the daemon(s) */
if (ORTE_SUCCESS != (rc = plm_slurm_start_proc(argc, argv, env, cur_prefix))) {
ORTE_ERROR_LOG(rc);
goto cleanup;
}
/* do NOT wait for srun to complete. Srun only completes when the processes
* it starts - in this case, the orteds - complete. Instead, we'll catch
* any srun failures and deal with them elsewhere
*/
/* wait for daemons to callback */
if (ORTE_SUCCESS != (rc = orte_plm_base_daemon_callback(map->num_new_daemons))) {
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: daemon launch failed for job %s on error %s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
orte_util_print_jobids(active_job), ORTE_ERROR_NAME(rc)));
goto cleanup;
}
launch_apps:
/* get here if daemons launch okay - any failures now by apps */
launching_daemons = false;
failed_job = active_job;
if (ORTE_SUCCESS != (rc = orte_plm_base_launch_apps(active_job))) {
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: launch of apps failed for job %s on error %s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
orte_util_print_jobids(active_job), ORTE_ERROR_NAME(rc)));
goto cleanup;
}
/* declare the launch a success */
failed_launch = false;
if (orte_timing) {
if (0 != gettimeofday(&launchstop, NULL)) {
opal_output(0, "plm_slurm: could not obtain stop time");
} else {
opal_output(0, "plm_slurm: total job launch time is %ld usec",
(launchstop.tv_sec - launchstart.tv_sec)*1000000 +
(launchstop.tv_usec - launchstart.tv_usec));
}
}
if (ORTE_SUCCESS != rc) {
opal_output(0, "plm:slurm: start_procs returned error %d", rc);
goto cleanup;
}
cleanup:
if (NULL != argv) {
opal_argv_free(argv);
}
if (NULL != env) {
opal_argv_free(env);
}
if(NULL != jobid_string) {
free(jobid_string);
}
/* check for failed launch - if so, force terminate */
if (failed_launch) {
orte_plm_base_launch_failed(failed_job, -1, ORTE_ERROR_DEFAULT_EXIT_CODE, ORTE_JOB_STATE_FAILED_TO_START);
}
return rc;
}
static int plm_slurm_terminate_job(orte_jobid_t jobid)
{
int rc;
/* order them to kill their local procs for this job */
if (ORTE_SUCCESS != (rc = orte_plm_base_orted_kill_local_procs(jobid))) {
ORTE_ERROR_LOG(rc);
}
return rc;
}
/**
* Terminate the orteds for a given job
*/
static int plm_slurm_terminate_orteds(void)
{
int rc;
orte_job_t *jdata;
/* tell them to die without sending a reply - we will rely on the
* waitpid to tell us when they have exited!
When we can detect that a daemon has failed, then we would like to terminate the system without having it lock up. The "hang" is currently caused by the system attempting to send messages to the daemons (specifically, ordering them to kill their local procs and then terminate). Unfortunately, without some idea of which daemon has died, the system hangs while attempting to send a message to someone who is no longer alive. This commit introduces the necessary logic to avoid that conflict. If a PLS component can identify that a daemon has failed, then we will set a flag indicating that fact. The xcast system will subsequently check that flag and, if it is set, will send all messages direct to the recipient. In the case of "kill local procs" and "terminate", the messages will go directly to each orted, thus bypassing any orted that has failed. In addition, the xcast system will -not- wait for the messages to complete, but will return immediately (i.e., operate in non-blocking mode). Orterun will wait (via an event timer) for a period of time based on the number of daemons in the system to allow the messages to attempt to be delivered - at the end of that time, orterun will simply exit, alerting the user to the problem and -strongly- recommending they run orte-clean. I could only test this on slurm for the case where all daemons unexpectedly died - srun apparently only executes its waitpid callback when all launched functions terminate. I have asked that Jeff integrate this capability into the OOB as he is working on it so that we execute it whenever a socket to an orted is unexpectedly closed. Meantime, the functionality will rarely get called, but at least the logic is available for anyone whose environment can support it. This commit was SVN r16451.
2007-10-15 22:00:30 +04:00
*/
if (ORTE_SUCCESS != (rc = orte_plm_base_orted_exit(ORTE_DAEMON_EXIT_NO_REPLY_CMD))) {
ORTE_ERROR_LOG(rc);
}
/* check to see if the primary pid is set. If not, this indicates
* that we never launched any additional daemons, so we cannot
* not wait for a waitpid to fire and tell us it's okay to
* exit. Instead, we simply trigger an exit for ourselves
*/
if (!primary_pid_set) {
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: primary daemons complete!",
orte_util_print_name_args(ORTE_PROC_MY_NAME)));
jdata = orte_get_job_data_object(ORTE_PROC_MY_NAME->jobid);
jdata->state = ORTE_JOB_STATE_TERMINATED;
/* need to set the #terminated value to avoid an incorrect error msg */
jdata->num_terminated = jdata->num_procs;
orte_trigger_event(&orteds_exit);
}
return rc;
}
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
/**
* Signal all the processes in the child srun by sending the signal directly to it
*/
static int plm_slurm_signal_job(orte_jobid_t jobid, int32_t signal)
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
{
int rc = ORTE_SUCCESS;
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
/* order them to pass this signal to their local procs */
if (ORTE_SUCCESS != (rc = orte_plm_base_orted_signal_local_procs(jobid, signal))) {
ORTE_ERROR_LOG(rc);
}
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
return rc;
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
}
static int plm_slurm_finalize(void)
{
int rc;
/* cleanup any pending recvs */
if (ORTE_SUCCESS != (rc = orte_plm_base_comm_stop())) {
ORTE_ERROR_LOG(rc);
}
return ORTE_SUCCESS;
}
static void srun_wait_cb(pid_t pid, int status, void* cbdata){
orte_job_t *jdata;
/* According to the SLURM folks, srun always returns the highest exit
code of our remote processes. Thus, a non-zero exit status doesn't
necessarily mean that srun failed - it could be that an orted returned
a non-zero exit status. Of course, that means the orted failed(!), so
the end result is the same - the job didn't start.
As a result, we really can't do much with the exit status itself - it
could be something in errno (if srun itself failed), or it could be
something returned by an orted, or it could be something returned by
the OS (e.g., couldn't find the orted binary). Somebody is welcome
to sort out all the options and pretty-print a better error message. For
now, though, the only thing that really matters is that
srun failed. Report the error and make sure that orterun
wakes up - otherwise, do nothing!
Unfortunately, the pid returned here is the srun pid, not the pid of
the proc that actually died! So, to avoid confusion, just use -1 as the
pid so nobody thinks this is real
*/
/* if we are in the launch phase, then any termination is bad */
if (launching_daemons) {
/* report that one or more daemons failed to launch so we can exit */
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: daemon failed during launch",
orte_util_print_name_args(ORTE_PROC_MY_NAME)));
orte_plm_base_launch_failed(ORTE_PROC_MY_NAME->jobid, -1, status, ORTE_JOB_STATE_FAILED_TO_START);
} else {
/* if this is after launch, then we need to abort only if the status
* returned is non-zero - i.e., if the orteds exited with an error
*/
if (0 != status) {
When we can detect that a daemon has failed, then we would like to terminate the system without having it lock up. The "hang" is currently caused by the system attempting to send messages to the daemons (specifically, ordering them to kill their local procs and then terminate). Unfortunately, without some idea of which daemon has died, the system hangs while attempting to send a message to someone who is no longer alive. This commit introduces the necessary logic to avoid that conflict. If a PLS component can identify that a daemon has failed, then we will set a flag indicating that fact. The xcast system will subsequently check that flag and, if it is set, will send all messages direct to the recipient. In the case of "kill local procs" and "terminate", the messages will go directly to each orted, thus bypassing any orted that has failed. In addition, the xcast system will -not- wait for the messages to complete, but will return immediately (i.e., operate in non-blocking mode). Orterun will wait (via an event timer) for a period of time based on the number of daemons in the system to allow the messages to attempt to be delivered - at the end of that time, orterun will simply exit, alerting the user to the problem and -strongly- recommending they run orte-clean. I could only test this on slurm for the case where all daemons unexpectedly died - srun apparently only executes its waitpid callback when all launched functions terminate. I have asked that Jeff integrate this capability into the OOB as he is working on it so that we execute it whenever a socket to an orted is unexpectedly closed. Meantime, the functionality will rarely get called, but at least the logic is available for anyone whose environment can support it. This commit was SVN r16451.
2007-10-15 22:00:30 +04:00
/* an orted must have died unexpectedly after launch - report
* that the daemon has failed so we exit
*/
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: daemon failed while running",
orte_util_print_name_args(ORTE_PROC_MY_NAME)));
orte_plm_base_launch_failed(ORTE_PROC_MY_NAME->jobid, -1, status, ORTE_JOB_STATE_ABORTED);
}
/* otherwise, check to see if this is the primary pid */
if (primary_srun_pid == pid) {
/* in this case, we just want to fire the proper trigger so
* mpirun can exit
*/
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: primary daemons complete!",
orte_util_print_name_args(ORTE_PROC_MY_NAME)));
jdata = orte_get_job_data_object(ORTE_PROC_MY_NAME->jobid);
jdata->state = ORTE_JOB_STATE_TERMINATED;
/* need to set the #terminated value to avoid an incorrect error msg */
jdata->num_terminated = jdata->num_procs;
orte_trigger_event(&orteds_exit);
}
}
}
static int plm_slurm_start_proc(int argc, char **argv, char **env,
char *prefix)
{
int fd;
int srun_pid;
char *exec_argv = opal_path_findv(argv[0], 0, env, NULL);
if (NULL == exec_argv) {
return ORTE_ERR_NOT_FOUND;
}
srun_pid = fork();
if (-1 == srun_pid) {
ORTE_ERROR_LOG(ORTE_ERR_SYS_LIMITS_CHILDREN);
free(exec_argv);
return ORTE_ERR_SYS_LIMITS_CHILDREN;
}
if (0 == srun_pid) { /* child */
char *bin_base = NULL, *lib_base = NULL;
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
/* Figure out the basenames for the libdir and bindir. There
is a lengthy comment about this in plm_rsh_module.c
explaining all the rationale for how / why we're doing
this. */
lib_base = opal_basename(opal_install_dirs.libdir);
bin_base = opal_basename(opal_install_dirs.bindir);
/* If we have a prefix, then modify the PATH and
LD_LIBRARY_PATH environment variables. */
if (NULL != prefix) {
char *oldenv, *newenv;
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
/* Reset PATH */
oldenv = getenv("PATH");
if (NULL != oldenv) {
asprintf(&newenv, "%s/%s:%s", prefix, bin_base, oldenv);
} else {
asprintf(&newenv, "%s/%s", prefix, bin_base);
}
opal_setenv("PATH", newenv, true, &env);
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: reset PATH: %s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
newenv));
free(newenv);
Add ability to trap and propagate SIGUSR1/2 to remote processes. There are a number of small changes that hit a bunch of files: 1. Changed the RMGR and PLS APIs to add "signal_job" and "signal_proc" entry points. Only the "signal_job" entries are implemented - none of the components have implementations for "signal_proc" at this time. Thus, you can signal all of the procs in a job, but cannot currently signal only one specific proc. 2. Implemented those new API functions in all components except xgrid (Brian will do so very soon). Only the rsh/ssh and fork modules have been tested, however, and only under OS-X. 3. Added signal traps and callback functions for SIGUSR1/2 to orterun/mpirun that catch those signals and call the appropriate commands to propagate them out to all processes in the job. 4. Added a new test directory under the orte branch to (eventually) hold unit and system level tests for just the run-time. Since our test branch of the repository is under restricted access, people working on the RTE were continually developing their own system-level tests - thus making it hard to help diagnose problems. I have moved the more commonly-used functions here, and added one specifically for testing the SIGUSR1/2 functionality. I will be contacting people directly to seek help with testing the changes on more environments. Other than compile issues, you should see absolutely no change in behavior on any of your systems - this additional functionality is transparent to anyone who does not issue a SIGUSR1/2 to mpirun. Ralph This commit was SVN r10258.
2006-06-08 22:27:17 +04:00
/* Reset LD_LIBRARY_PATH */
oldenv = getenv("LD_LIBRARY_PATH");
if (NULL != oldenv) {
asprintf(&newenv, "%s/%s:%s", prefix, lib_base, oldenv);
} else {
asprintf(&newenv, "%s/%s", prefix, lib_base);
}
opal_setenv("LD_LIBRARY_PATH", newenv, true, &env);
OPAL_OUTPUT_VERBOSE((1, orte_plm_globals.output,
"%s plm:slurm: reset LD_LIBRARY_PATH: %s",
orte_util_print_name_args(ORTE_PROC_MY_NAME),
newenv));
free(newenv);
}
fd = open("/dev/null", O_CREAT|O_WRONLY|O_TRUNC, 0666);
if(fd > 0) {
dup2(fd, 0);
}
/* When not in debug mode and --debug-daemons was not passed,
* tie stdout/stderr to dev null so we don't see messages from orted
* EXCEPT if the user has requested that we leave sessions attached
*/
if (0 >= opal_output_get_verbosity(orte_plm_globals.output) &&
!orte_debug_daemons_flag && !orte_leave_session_attached) {
if (fd >= 0) {
if (fd != 1) {
dup2(fd,1);
}
if (fd != 2) {
dup2(fd,2);
}
}
}
if (fd > 2) {
close(fd);
}
/* get the srun process out of orterun's process group so that
signals sent from the shell (like those resulting from
cntl-c) don't get sent to srun */
setpgid(0, 0);
execve(exec_argv, argv, env);
opal_output(0, "plm:slurm:start_proc: exec failed");
/* don't return - need to exit - returning would be bad -
we're not in the calling process anymore */
exit(1);
} else { /* parent */
/* just in case, make sure that the srun process is not in our
process group any more. Stevens says always do this on both
sides of the fork... */
setpgid(srun_pid, srun_pid);
/* if this is the primary launch - i.e., not a comm_spawn of a
* child job - then save the pid
*/
if (!primary_pid_set) {
primary_srun_pid = srun_pid;
primary_pid_set = true;
}
/* setup the waitpid so we can find out if srun succeeds! */
orte_wait_cb(srun_pid, srun_wait_cb, NULL);
free(exec_argv);
}
return ORTE_SUCCESS;
}