1
1
openmpi/ompi/tools/mpisync/hpctimer.c

362 строки
10 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2010-2011, Siberian State University of Telecommunications
* and Information Sciences. All rights reserved.
* Copyright (c) 2010-2011, A.V. Rzhanov Institute of Semiconductor Physics SB RAS.
* All rights reserved.
*
* hpctimer.c: High-Resolution timers library.
* http://mpiperf.cpct.sibsutis.ru/index.php
*
* Copyright (C) 2011 Mikhail Kurnosov <mkurnosov@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the the copyright holders nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <math.h>
#include <inttypes.h>
#include <mpi.h>
#include "hpctimer.h"
#define NELEMS(v) (sizeof(v) / sizeof((v)[0]))
/*
* Compilers macro:
* __GNUC__ - GCC
* __SUNPRO_C - Solaris Studio
* __INTEL_COMPILER - Intel C++ Compiler
* __xlC__ || __IBMC__ - IBM C Compiler
* __PATHSCALE__ - PathScale Compiler
* __PGI - PGI Compiler
* __DECC - DEC Compiler
* __HP_cc - HP Compiler
* __SX - NEC SX Compiler
* __COMO__ - Comeau C++
* _CRAYC - Cray C Compiler
* sgi || __sgi - SGI Compiler
*/
#if defined(__GNUC__)
# define __inline__ __inline__
# define __asm__ __asm__
# define __volatile__ __volatile__
#elif defined(__SUNPRO_C)
# define __inline__ __inline__
# define __asm__ __asm__
# define __volatile__ __volatile__
#endif
typedef int (*hpctimer_initialize_func_ptr_t)(void);
typedef void (*hpctimer_finalize_func_ptr_t)(void);
typedef int (*hpctimer_isimplemented_func_ptr_t)(void);
typedef double (*hpctimer_wtime_func_ptr_t)(void);
typedef struct hpctimer {
char *name;
hpctimer_initialize_func_ptr_t initialize;
hpctimer_finalize_func_ptr_t finalize;
hpctimer_isimplemented_func_ptr_t isimplemented;
hpctimer_wtime_func_ptr_t wtime;
} hpctimer_t;
static uint64_t hpctimer_overhead; /* Timer overhead (seconds) */
static uint64_t hpctimer_freq; /* Timer frequency (ticks per usec) */
static double hpctimer_wtime_tsc(void);
static int hpctimer_tsc_initialize(void);
static __inline__ uint64_t hpctimer_gettsc(void);
static uint64_t hpctimer_measure_overhead(void);
static uint64_t hpctimer_calibrate_sleep(uint64_t overhead);
static double hpctimer_wtime_gettimeofday(void);
/*
* Timers
*/
static hpctimer_t hpctimer_timers[] = {
{"MPI_Wtime", NULL, NULL, NULL, MPI_Wtime},
{"gettimeofday", NULL, NULL, NULL, hpctimer_wtime_gettimeofday},
{"tsc", hpctimer_tsc_initialize, NULL, NULL, hpctimer_wtime_tsc}
};
static hpctimer_wtime_func_ptr_t hpctimer_wtime_func_ptr = NULL;
static int hpctimer_timer = -1;
/* hpctimer_initialize: */
int hpctimer_initialize(const char *timername)
{
hpctimer_wtime_func_ptr = NULL;
hpctimer_timer = -1;
unsigned int i;
for (i = 0; i < NELEMS(hpctimer_timers); i++) {
if (hpctimer_timers[i].isimplemented != NULL) {
if (!hpctimer_timers[i].isimplemented()) {
continue;
}
}
if (strcasecmp(timername, hpctimer_timers[i].name) == 0) {
hpctimer_wtime_func_ptr = hpctimer_timers[i].wtime;
hpctimer_timer = i;
if (hpctimer_timers[i].initialize) {
return hpctimer_timers[i].initialize();
}
return HPCTIMER_SUCCESS;
}
}
return HPCTIMER_FAILURE;
}
/* hpctimer_finalize: */
void hpctimer_finalize(void)
{
if (hpctimer_timers[hpctimer_timer].finalize) {
hpctimer_timers[hpctimer_timer].finalize();
}
hpctimer_wtime_func_ptr = NULL;
}
/* hpctimer_print_timers: */
void hpctimer_print_timers(void)
{
unsigned int i;
printf("Supported timers:\n");
for (i = 0; i < NELEMS(hpctimer_timers); i++) {
if (hpctimer_timers[i].isimplemented != NULL) {
if (!hpctimer_timers[i].isimplemented()) {
continue;
}
}
printf(" %s\n", hpctimer_timers[i].name);
}
}
/*
* hpctimer_sanity_check: Returns 1 if the results of measures
* by timer are correct.
*/
int hpctimer_sanity_check(void)
{
enum { NTESTS = 4 };
double start, stop, currtime, prevtime = 0.0, err = 0.05;
int sanity = 1;
int delay = 0;
for (delay = 1; delay < NTESTS; delay++) {
start = hpctimer_wtime();
sleep(delay);
stop = hpctimer_wtime();
currtime = stop - start;
if (delay > 1) {
if (fabs(prevtime - currtime / delay) > prevtime * err) {
sanity = 0;
}
/*
printf("# timer sleep %d sec.; timer result: %.6f; diff: %.6f\n",
delay - 1, currtime / delay, fabs(prevtime - currtime / delay));
*/
}
prevtime = currtime / delay;
}
return sanity;
}
/* hpctimer_wtime: Returns walltime in seconds. */
double hpctimer_wtime(void)
{
return hpctimer_wtime_func_ptr();
}
/* hpctimer_wtime_gettimeofday: */
static double hpctimer_wtime_gettimeofday(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (double)tv.tv_sec + 1E-6 * tv.tv_usec;
}
/*
* hpctimer_wtime_tsc: Returns TSC-based walltime in seconds.
*/
static double hpctimer_wtime_tsc(void)
{
return (double)(hpctimer_gettsc() - hpctimer_overhead) / (double)hpctimer_freq;
}
/*
* hpctimer_tsc_initialize: Initializes TSC-based timer.
*
* The code is based on recommendations from manual of Intel Corp.
* "Using the RDTSC Instruction for Performance Monitoring".
*/
static int hpctimer_tsc_initialize(void)
{
hpctimer_overhead = hpctimer_measure_overhead();
hpctimer_freq = hpctimer_calibrate_sleep(hpctimer_overhead);
return HPCTIMER_SUCCESS;
}
/*
* hpctimer_gettsc: Returns TSC value.
*/
static __inline__ uint64_t hpctimer_gettsc(void)
{
#if defined(__x86_64__)
uint32_t low, high;
__asm__ __volatile__(
"xorl %%eax, %%eax\n"
"cpuid\n"
::: "%rax", "%rbx", "%rcx", "%rdx"
);
__asm__ __volatile__(
"rdtsc\n"
: "=a" (low), "=d" (high)
);
return ((uint64_t)high << 32) | low;
#elif defined(__i386__)
uint64_t tsc;
__asm__ __volatile__(
"xorl %%eax, %%eax\n"
"cpuid\n"
::: "%eax", "%ebx", "%ecx", "%edx"
);
__asm__ __volatile__(
"rdtsc\n"
: "=A" (tsc)
);
return tsc;
#else
# error "Unsupported platform"
#endif
}
/* hpctimer_measure_overhead: Returns overhead of TSC reading (in tics). */
static uint64_t hpctimer_measure_overhead(void)
{
enum {
TSC_OVERHEAD_NTESTS = 10
};
int i;
uint64_t count, overhead = (uint64_t)~0x01;
/* Make warm-up passes and determine timer overhead */
for (i = 0; i < TSC_OVERHEAD_NTESTS; i++) {
count = hpctimer_gettsc();
count = hpctimer_gettsc() - count;
if (count < overhead) {
overhead = count;
}
}
return overhead;
}
/*
* hpctimer_calibrate_adaptive: Returns number of TSC tics per second.
* Adaptive algorithm based on sleep.
*/
/*
static uint64_t hpctimer_calibrate_adaptive(uint64_t overhead)
{
enum {
TSC_CALIBRATE_NTESTS = 2
};
int i;
uint64_t count, freq;
freq = (uint64_t)(~0x01);
for (i = 0; i < TSC_CALIBRATE_NTESTS; i++) {
count = hpctimer_gettsc();
sleep(1);
count = hpctimer_gettsc() - count - overhead;
if (count < 0)
count = 0;
if (count < freq) {
freq = count;
i = 0;
}
}
return freq;
}
*/
/*
* hpctimer_calibrate_sleep: Returns number of TSC tics per second.
*/
static uint64_t hpctimer_calibrate_sleep(uint64_t overhead)
{
uint64_t count;
int delay = 3;
count = hpctimer_gettsc();
sleep(delay);
count = hpctimer_gettsc() - count - overhead;
return count / delay;
}
/*
* hpctimer_calibrate_loop: Returns number of TSC tics per second.
*/
/*
static uint64_t hpctimer_calibrate_loop(uint64_t overhead)
{
enum {
TSC_CALIBRATE_NTESTS = 2
};
uint64_t count, countmin = (uint64_t)~0x01;
struct timeval tv1, tv2;
int i, j;
__volatile__ int dummy = 0;
for (i = 0; i < TSC_CALIBRATE_NTESTS; i++) {
gettimeofday(&tv1, NULL);
count = hpctimer_gettsc();
for (j = 0; j < 10000000; j++) {
dummy++;
}
count = hpctimer_gettsc() - count - overhead;
gettimeofday(&tv2, NULL);
if (count < 0)
count = 0;
if (count < countmin)
countmin = count;
}
return countmin * 1000000 / (tv2.tv_sec * 1000000 + tv2.tv_usec -
tv1.tv_sec * 1000000 - tv1.tv_usec);
}
*/