1
1
openmpi/orte/runtime/orte_params.c

121 строка
4.3 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2005 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2007 Cisco, Inc. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "orte_config.h"
#include "orte/orte_constants.h"
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include "opal/mca/base/mca_base_param.h"
#include "opal/threads/mutex.h"
#include "opal/threads/condition.h"
#include "orte/runtime/runtime.h"
#include "orte/runtime/params.h"
/* globals used by RTE */
bool orte_debug_flag, orte_timing, orte_infrastructure;
bool orte_debug_daemons_flag, orte_debug_daemons_file_flag;
bool orted_spin_flag, orte_no_daemonize_flag;
When we can detect that a daemon has failed, then we would like to terminate the system without having it lock up. The "hang" is currently caused by the system attempting to send messages to the daemons (specifically, ordering them to kill their local procs and then terminate). Unfortunately, without some idea of which daemon has died, the system hangs while attempting to send a message to someone who is no longer alive. This commit introduces the necessary logic to avoid that conflict. If a PLS component can identify that a daemon has failed, then we will set a flag indicating that fact. The xcast system will subsequently check that flag and, if it is set, will send all messages direct to the recipient. In the case of "kill local procs" and "terminate", the messages will go directly to each orted, thus bypassing any orted that has failed. In addition, the xcast system will -not- wait for the messages to complete, but will return immediately (i.e., operate in non-blocking mode). Orterun will wait (via an event timer) for a period of time based on the number of daemons in the system to allow the messages to attempt to be delivered - at the end of that time, orterun will simply exit, alerting the user to the problem and -strongly- recommending they run orte-clean. I could only test this on slurm for the case where all daemons unexpectedly died - srun apparently only executes its waitpid callback when all launched functions terminate. I have asked that Jeff integrate this capability into the OOB as he is working on it so that we execute it whenever a socket to an orted is unexpectedly closed. Meantime, the functionality will rarely get called, but at least the logic is available for anyone whose environment can support it. This commit was SVN r16451.
2007-10-15 18:00:30 +00:00
bool orte_daemon_died = false;
struct timeval orte_abort_timeout;
char **orte_launch_environ;
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC. The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component. This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done: As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in. In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in. The incoming changes revamp these procedures in three ways: 1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step. The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic. Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure. 2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed. The size of this data has been reduced in three ways: (a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes. To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose. (b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction. (c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using. While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly. 3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup. It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging. Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future. There are a few minor additional changes in the commit that I'll just note in passing: * propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details. * requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details. * cleanup of some stale header files This commit was SVN r16364.
2007-10-05 19:48:23 +00:00
char **orted_cmd_line=NULL;
opal_mutex_t orted_comm_mutex;
opal_condition_t orted_comm_cond;
bool orte_orterun;
bool orted_comm_exit_cond;
/*
* Whether we have completed orte_init or not
*/
bool orte_initialized = false;
/* whether we have registered params or not */
static bool params_set = false;
int orte_register_params(bool infrastructure)
{
int value;
if (params_set) {
return ORTE_SUCCESS;
}
mca_base_param_reg_int_name("orte", "debug",
"Top-level ORTE debug switch",
false, false, (int)false, &value);
orte_debug_flag = OPAL_INT_TO_BOOL(value);
mca_base_param_reg_int_name("orte", "no_daemonize",
"Whether to properly daemonize the ORTE daemons or not",
false, false, (int)false, &value);
orte_no_daemonize_flag = OPAL_INT_TO_BOOL(value);
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 13:28:54 +00:00
mca_base_param_reg_int_name("orte", "debug_daemons",
"Whether to debug the ORTE daemons or not",
false, false, (int)false, &value);
orte_debug_daemons_flag = OPAL_INT_TO_BOOL(value);
mca_base_param_reg_int_name("orte", "debug_daemons_file",
"Whether want stdout/stderr of daemons to go to a file or not",
false, false, (int)false, &value);
orte_debug_daemons_file_flag = OPAL_INT_TO_BOOL(value);
/* If --debug-daemons-file was specified, that also implies
--debug-daemons */
if (orte_debug_daemons_file_flag) {
orte_debug_daemons_flag = true;
}
mca_base_param_reg_int_name("orted", "spin",
"Have any orteds spin until we can connect a debugger to them",
false, false, (int)false, &value);
orted_spin_flag = OPAL_INT_TO_BOOL(value);
/* save this in a global location as others will need to reference it */
orte_infrastructure = infrastructure;
Bring in the generalized xcast communication system along with the correspondingly revised orted launch. I will send a message out to developers explaining the basic changes. In brief: 1. generalize orte_rml.xcast to become a general broadcast-like messaging system. Messages can now be sent to any tag on the daemons or processes. Note that any message sent via xcast will be delivered to ALL processes in the specified job - you don't get to pick and choose. At a later date, we will introduce an augmented capability that will use the daemons as relays, but will allow you to send to a specified array of process names. 2. extended orte_rml.xcast so it supports more scalable message routing methodologies. At the moment, we support three: (a) direct, which sends the message directly to all recipients; (b) linear, which sends the message to the local daemon on each node, which then relays it to its own local procs; and (b) binomial, which sends the message via a binomial algo across all the daemons, each of which then relays to its own local procs. The crossover points between the algos are adjustable via MCA param, or you can simply demand that a specific algo be used. 3. orteds no longer exhibit two types of behavior: bootproxy or VM. Orteds now always behave like they are part of a virtual machine - they simply launch a job if mpirun tells them to do so. This is another step towards creating an "orteboot" functionality, but also provided a clean system for supporting message relaying. Note one major impact of this commit: multiple daemons on a node cannot be supported any longer! Only a single daemon/node is now allowed. This commit is known to break support for the following environments: POE, Xgrid, Xcpu, Windows. It has been tested on rsh, SLURM, and Bproc. Modifications for TM support have been made but could not be verified due to machine problems at LANL. Modifications for SGE have been made but could not be verified. The developers for the non-verified environments will be separately notified along with suggestions on how to fix the problems. This commit was SVN r15007.
2007-06-12 13:28:54 +00:00
/* check for timing requests */
mca_base_param_reg_int_name("orte", "timing",
"Request that critical timing loops be measured",
false, false, (int)false, &value);
orte_timing = OPAL_INT_TO_BOOL(value);
/* User-level debugger info string */
mca_base_param_reg_string_name("orte", "base_user_debugger",
"Sequence of user-level debuggers to search for in orterun",
false, false, "totalview @mpirun@ -a @mpirun_args@ : ddt -n @np@ -start @executable@ @executable_argv@ @single_app@ : fxp @mpirun@ -a @mpirun_args@", NULL);
mca_base_param_reg_int_name("orte", "abort_timeout",
"Time to wait [in seconds] before giving up on aborting an ORTE operation",
false, false, 10, &value);
orte_abort_timeout.tv_sec = value;
orte_abort_timeout.tv_usec = 0;
/* All done */
params_set = true;
return ORTE_SUCCESS;
}