2004-07-08 18:48:34 +04:00
|
|
|
/*
|
2006-03-05 14:18:19 +03:00
|
|
|
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
|
2005-11-05 22:57:48 +03:00
|
|
|
* University Research and Technology
|
|
|
|
* Corporation. All rights reserved.
|
2006-03-05 14:18:19 +03:00
|
|
|
* Copyright (c) 2004-2006 The University of Tennessee and The University
|
2005-11-05 22:57:48 +03:00
|
|
|
* of Tennessee Research Foundation. All rights
|
|
|
|
* reserved.
|
2006-03-05 14:18:19 +03:00
|
|
|
* Copyright (c) 2004-2006 High Performance Computing Center Stuttgart,
|
2004-11-28 23:09:25 +03:00
|
|
|
* University of Stuttgart. All rights reserved.
|
2006-03-05 14:18:19 +03:00
|
|
|
* Copyright (c) 2004-2006 The Regents of the University of California.
|
2005-03-24 15:43:37 +03:00
|
|
|
* All rights reserved.
|
2007-01-27 16:44:03 +03:00
|
|
|
* Copyright (c) 2006-2007 Cisco Systems, Inc. All rights reserved.
|
2004-11-22 04:38:40 +03:00
|
|
|
* $COPYRIGHT$
|
2005-09-01 05:07:30 +04:00
|
|
|
*
|
2004-11-22 04:38:40 +03:00
|
|
|
* Additional copyrights may follow
|
2005-09-01 05:07:30 +04:00
|
|
|
*
|
2004-11-22 03:37:56 +03:00
|
|
|
* $HEADER$
|
2004-07-08 18:48:34 +04:00
|
|
|
*/
|
|
|
|
|
2004-08-19 03:24:27 +04:00
|
|
|
#include "ompi_config.h"
|
|
|
|
|
2004-02-13 16:56:55 +03:00
|
|
|
#include <string.h>
|
2004-07-08 18:48:34 +04:00
|
|
|
|
2005-07-04 02:45:48 +04:00
|
|
|
#include "opal/threads/mutex.h"
|
2005-07-04 03:31:27 +04:00
|
|
|
#include "opal/util/output.h"
|
2007-01-02 11:04:34 +03:00
|
|
|
#include "opal/util/show_help.h"
|
2008-02-28 04:57:57 +03:00
|
|
|
|
2005-08-27 01:03:41 +04:00
|
|
|
#include "orte/util/sys_info.h"
|
2008-02-28 04:57:57 +03:00
|
|
|
#include "opal/dss/dss.h"
|
2005-09-01 05:07:30 +04:00
|
|
|
#include "orte/mca/errmgr/errmgr.h"
|
2005-07-15 02:43:01 +04:00
|
|
|
#include "orte/util/proc_info.h"
|
2008-02-28 04:57:57 +03:00
|
|
|
#include "orte/util/name_fns.h"
|
|
|
|
#include "orte/runtime/orte_globals.h"
|
|
|
|
|
2005-07-15 02:43:01 +04:00
|
|
|
#include "ompi/proc/proc.h"
|
|
|
|
#include "ompi/mca/pml/pml.h"
|
2005-08-05 22:03:30 +04:00
|
|
|
#include "ompi/datatype/dt_arch.h"
|
2005-07-15 02:43:01 +04:00
|
|
|
#include "ompi/datatype/convertor.h"
|
2006-05-11 23:46:21 +04:00
|
|
|
#include "ompi/runtime/params.h"
|
2007-01-02 11:04:34 +03:00
|
|
|
#include "ompi/runtime/mpiruntime.h"
|
2007-08-09 22:53:28 +04:00
|
|
|
#include "ompi/runtime/ompi_module_exchange.h"
|
2004-01-29 18:34:47 +03:00
|
|
|
|
2005-07-03 20:22:16 +04:00
|
|
|
static opal_list_t ompi_proc_list;
|
2005-07-04 02:45:48 +04:00
|
|
|
static opal_mutex_t ompi_proc_lock;
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t* ompi_proc_local_proc = NULL;
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
static void ompi_proc_construct(ompi_proc_t* proc);
|
|
|
|
static void ompi_proc_destruct(ompi_proc_t* proc);
|
2004-01-16 03:31:58 +03:00
|
|
|
|
2004-10-26 15:39:16 +04:00
|
|
|
OBJ_CLASS_INSTANCE(
|
2005-09-01 05:07:30 +04:00
|
|
|
ompi_proc_t,
|
2005-07-03 20:22:16 +04:00
|
|
|
opal_list_item_t,
|
2005-09-01 05:07:30 +04:00
|
|
|
ompi_proc_construct,
|
2004-10-26 15:39:16 +04:00
|
|
|
ompi_proc_destruct
|
|
|
|
);
|
|
|
|
|
2004-01-16 03:31:58 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
void ompi_proc_construct(ompi_proc_t* proc)
|
2004-01-16 03:31:58 +03:00
|
|
|
{
|
2006-07-04 05:20:20 +04:00
|
|
|
proc->proc_bml = NULL;
|
2004-02-14 01:16:39 +03:00
|
|
|
proc->proc_pml = NULL;
|
2005-07-04 02:45:48 +04:00
|
|
|
OBJ_CONSTRUCT(&proc->proc_lock, opal_mutex_t);
|
2004-03-26 17:15:20 +03:00
|
|
|
|
2005-08-05 22:03:30 +04:00
|
|
|
/* By default all processors are supposelly having the same architecture as me. Thus,
|
|
|
|
* by default we run in a homogeneous environment. Later when the registry callback
|
|
|
|
* get fired we will have to set the convertors to the correct architecture.
|
|
|
|
*/
|
|
|
|
proc->proc_convertor = ompi_mpi_local_convertor;
|
|
|
|
OBJ_RETAIN( ompi_mpi_local_convertor );
|
|
|
|
proc->proc_arch = ompi_mpi_local_arch;
|
2004-01-29 18:34:47 +03:00
|
|
|
|
2005-07-15 02:43:01 +04:00
|
|
|
proc->proc_flags = 0;
|
|
|
|
|
2006-05-11 23:46:21 +04:00
|
|
|
/* By default, put NULL in the hostname. It may or may not get
|
|
|
|
filled in later -- consumer of this field beware! */
|
|
|
|
proc->proc_hostname = NULL;
|
|
|
|
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2005-07-03 20:22:16 +04:00
|
|
|
opal_list_append(&ompi_proc_list, (opal_list_item_t*)proc);
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
2004-01-16 03:31:58 +03:00
|
|
|
}
|
|
|
|
|
2004-01-29 18:34:47 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
void ompi_proc_destruct(ompi_proc_t* proc)
|
2004-01-16 03:31:58 +03:00
|
|
|
{
|
2005-08-05 22:03:30 +04:00
|
|
|
/* As all the convertors are created with OBJ_NEW we can just call OBJ_RELEASE. All, except
|
|
|
|
* the local convertor, will get destroyed at some point here. If the reference count is correct
|
|
|
|
* the local convertor (who has the reference count increased in the datatype) will not get
|
|
|
|
* destroyed here. It will be destroyed later when the ompi_ddt_finalize is called.
|
|
|
|
*/
|
2005-07-13 00:25:47 +04:00
|
|
|
OBJ_RELEASE( proc->proc_convertor );
|
2006-05-11 23:46:21 +04:00
|
|
|
if (NULL != proc->proc_hostname) {
|
|
|
|
free(proc->proc_hostname);
|
|
|
|
}
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2005-07-03 20:22:16 +04:00
|
|
|
opal_list_remove_item(&ompi_proc_list, (opal_list_item_t*)proc);
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
2004-03-31 20:59:06 +04:00
|
|
|
OBJ_DESTRUCT(&proc->proc_lock);
|
2004-01-16 03:31:58 +03:00
|
|
|
}
|
|
|
|
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
int ompi_proc_init(void)
|
2004-02-13 16:56:55 +03:00
|
|
|
{
|
2008-02-28 04:57:57 +03:00
|
|
|
orte_vpid_t i;
|
2004-02-13 16:56:55 +03:00
|
|
|
int rc;
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
uint32_t ui32;
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2005-07-03 20:22:16 +04:00
|
|
|
OBJ_CONSTRUCT(&ompi_proc_list, opal_list_t);
|
2005-07-04 02:45:48 +04:00
|
|
|
OBJ_CONSTRUCT(&ompi_proc_lock, opal_mutex_t);
|
2004-10-15 01:04:45 +04:00
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
/* create proc structures and find self */
|
|
|
|
for( i = 0; i < orte_process_info.num_procs; i++ ) {
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t *proc = OBJ_NEW(ompi_proc_t);
|
2008-02-28 04:57:57 +03:00
|
|
|
proc->proc_name.jobid = ORTE_PROC_MY_NAME->jobid;
|
|
|
|
proc->proc_name.vpid = i;
|
Bring over the update to terminate orteds that are generated by a dynamic spawn such as comm_spawn. This introduces the concept of a job "family" - i.e., jobs that have a parent/child relationship. Comm_spawn'ed jobs have a parent (the one that spawned them). We track that relationship throughout the lineage - i.e., if a comm_spawned job in turn calls comm_spawn, then it has a parent (the one that spawned it) and a "root" job (the original job that started things).
Accordingly, there are new APIs to the name service to support the ability to get a job's parent, root, immediate children, and all its descendants. In addition, the terminate_job, terminate_orted, and signal_job APIs for the PLS have been modified to accept attributes that define the extent of their actions. For example, doing a "terminate_job" with an attribute of ORTE_NS_INCLUDE_DESCENDANTS will terminate the given jobid AND all jobs that descended from it.
I have tested this capability on a MacBook under rsh, Odin under SLURM, and LANL's Flash (bproc). It worked successfully on non-MPI jobs (both simple and including a spawn), and MPI jobs (again, both simple and with a spawn).
This commit was SVN r12597.
2006-11-14 22:34:59 +03:00
|
|
|
if( i == ORTE_PROC_MY_NAME->vpid ) {
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_local_proc = proc;
|
2005-07-15 02:43:01 +04:00
|
|
|
proc->proc_flags |= OMPI_PROC_FLAG_LOCAL;
|
2004-03-03 19:44:41 +03:00
|
|
|
}
|
2004-02-13 16:56:55 +03:00
|
|
|
}
|
2005-07-15 02:43:01 +04:00
|
|
|
|
2007-08-09 22:53:28 +04:00
|
|
|
/* Fill in our local information */
|
|
|
|
rc = ompi_arch_compute_local_id(&ui32);
|
|
|
|
if (OMPI_SUCCESS != rc) return rc;
|
2005-07-15 02:43:01 +04:00
|
|
|
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ompi_proc_local_proc->proc_nodeid = orte_system_info.nodeid;
|
2007-08-09 22:53:28 +04:00
|
|
|
ompi_proc_local_proc->proc_arch = ui32;
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (ompi_mpi_keep_peer_hostnames) {
|
|
|
|
if (ompi_mpi_keep_fqdn_hostnames) {
|
|
|
|
/* use the entire FQDN name */
|
|
|
|
ompi_proc_local_proc->proc_hostname = strdup(orte_system_info.nodename);
|
|
|
|
} else {
|
|
|
|
/* use the unqualified name */
|
|
|
|
char *tmp, *ptr;
|
|
|
|
tmp = strdup(orte_system_info.nodename);
|
|
|
|
if (NULL != (ptr = strchr(tmp, '.'))) {
|
|
|
|
*ptr = '\0';
|
|
|
|
}
|
|
|
|
ompi_proc_local_proc->proc_hostname = strdup(tmp);
|
|
|
|
free(tmp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
rc = ompi_proc_publish_info();
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ompi_proc_publish_info(void)
|
|
|
|
{
|
|
|
|
orte_std_cntr_t datalen;
|
|
|
|
void *data;
|
2008-02-28 04:57:57 +03:00
|
|
|
opal_buffer_t* buf;
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
int rc;
|
2005-09-01 19:05:03 +04:00
|
|
|
|
2007-08-09 22:53:28 +04:00
|
|
|
/* pack our local data for others to use */
|
2008-02-28 04:57:57 +03:00
|
|
|
buf = OBJ_NEW(opal_buffer_t);
|
2007-08-09 22:53:28 +04:00
|
|
|
rc = ompi_proc_pack(&ompi_proc_local_proc, 1, buf);
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (OMPI_SUCCESS != rc) {
|
|
|
|
ORTE_ERROR_LOG(rc);
|
|
|
|
return rc;
|
|
|
|
}
|
2005-09-01 19:05:03 +04:00
|
|
|
|
2007-08-09 22:53:28 +04:00
|
|
|
/* send our data into the ether */
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.unload(buf, &data, &datalen);
|
2007-08-09 22:53:28 +04:00
|
|
|
if (OMPI_SUCCESS != rc) return rc;
|
|
|
|
OBJ_RELEASE(buf);
|
2005-09-01 19:05:03 +04:00
|
|
|
|
2007-08-09 22:53:28 +04:00
|
|
|
rc = ompi_modex_send_string("ompi-proc-info", data, datalen);
|
2005-09-01 19:05:03 +04:00
|
|
|
|
2007-08-09 22:53:28 +04:00
|
|
|
free(data);
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
ompi_proc_get_info(void)
|
|
|
|
{
|
2007-08-20 20:47:13 +04:00
|
|
|
int ret = OMPI_SUCCESS;
|
2007-08-09 22:53:28 +04:00
|
|
|
opal_list_item_t *item;
|
|
|
|
|
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
|
|
|
|
|
|
|
for (item = opal_list_get_first(&ompi_proc_list) ;
|
|
|
|
item != opal_list_get_end(&ompi_proc_list) ;
|
|
|
|
item = opal_list_get_next(item)) {
|
|
|
|
ompi_proc_t *proc = (ompi_proc_t*) item;
|
|
|
|
uint32_t arch;
|
|
|
|
char *hostname;
|
|
|
|
void *data;
|
|
|
|
size_t datalen;
|
2008-02-28 04:57:57 +03:00
|
|
|
orte_vpid_t nodeid;
|
2007-08-09 22:53:28 +04:00
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
if (OPAL_EQUAL != orte_util_compare_name_fields(ORTE_NS_CMP_JOBID,
|
2007-08-09 22:53:28 +04:00
|
|
|
&ompi_proc_local_proc->proc_name,
|
|
|
|
&proc->proc_name)) {
|
|
|
|
/* not in our jobid -- this shouldn't happen */
|
2007-08-20 20:47:13 +04:00
|
|
|
ret = OMPI_ERR_FATAL;
|
|
|
|
goto out;
|
2007-08-09 22:53:28 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
ret = ompi_modex_recv_string("ompi-proc-info", proc, &data, &datalen);
|
2007-09-28 22:50:37 +04:00
|
|
|
if (OMPI_SUCCESS == ret) {
|
2008-02-28 04:57:57 +03:00
|
|
|
opal_buffer_t *buf;
|
2007-09-28 22:50:37 +04:00
|
|
|
orte_std_cntr_t count=1;
|
|
|
|
orte_process_name_t name;
|
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
buf = OBJ_NEW(opal_buffer_t);
|
|
|
|
ret = opal_dss.load(buf, data, datalen);
|
2007-09-28 22:50:37 +04:00
|
|
|
if (OMPI_SUCCESS != ret)
|
|
|
|
goto out;
|
|
|
|
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
/* This isn't needed here, but packed just so that you
|
2007-09-28 22:50:37 +04:00
|
|
|
could, in theory, use the unpack code on this proc. We
|
|
|
|
don't,because we aren't adding procs, but need to
|
|
|
|
update them */
|
2008-02-28 04:57:57 +03:00
|
|
|
ret = opal_dss.unpack(buf, &name, &count, ORTE_NAME);
|
2007-09-28 22:50:37 +04:00
|
|
|
if (ret != ORTE_SUCCESS)
|
|
|
|
goto out;
|
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
ret = opal_dss.unpack(buf, &nodeid, &count, ORTE_VPID);
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (ret != ORTE_SUCCESS) {
|
|
|
|
ORTE_ERROR_LOG(ret);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
ret = opal_dss.unpack(buf, &arch, &count, OPAL_UINT32);
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (ret != ORTE_SUCCESS) {
|
|
|
|
ORTE_ERROR_LOG(ret);
|
2007-09-28 22:50:37 +04:00
|
|
|
goto out;
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
}
|
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
ret = opal_dss.unpack(buf, &hostname, &count, OPAL_STRING);
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (ret != ORTE_SUCCESS) {
|
|
|
|
ORTE_ERROR_LOG(ret);
|
2007-09-28 22:50:37 +04:00
|
|
|
goto out;
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
}
|
2007-09-28 22:50:37 +04:00
|
|
|
/* Free the buffer for the next proc */
|
|
|
|
OBJ_RELEASE(buf);
|
|
|
|
} else if (OMPI_ERR_NOT_IMPLEMENTED == ret) {
|
|
|
|
arch = ompi_proc_local_proc->proc_arch;
|
|
|
|
hostname = strdup("");
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ret = ORTE_SUCCESS;
|
2007-09-28 22:50:37 +04:00
|
|
|
} else {
|
2007-08-20 20:47:13 +04:00
|
|
|
goto out;
|
2007-09-28 22:50:37 +04:00
|
|
|
}
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
|
|
|
|
proc->proc_nodeid = nodeid;
|
2007-08-09 22:53:28 +04:00
|
|
|
proc->proc_arch = arch;
|
|
|
|
/* if arch is different than mine, create a new convertor for this proc */
|
|
|
|
if (proc->proc_arch != ompi_proc_local_proc->proc_arch) {
|
|
|
|
#if OMPI_ENABLE_HETEROGENEOUS_SUPPORT
|
|
|
|
OBJ_RELEASE(proc->proc_convertor);
|
|
|
|
proc->proc_convertor = ompi_convertor_create(proc->proc_arch, 0);
|
|
|
|
#else
|
|
|
|
opal_show_help("help-mpi-runtime",
|
|
|
|
"heterogeneous-support-unavailable",
|
|
|
|
true, orte_system_info.nodename,
|
|
|
|
hostname == NULL ? "<hostname unavailable>" :
|
|
|
|
hostname);
|
2007-08-20 20:47:13 +04:00
|
|
|
ret = OMPI_ERR_NOT_SUPPORTED;
|
|
|
|
goto out;
|
2007-08-09 22:53:28 +04:00
|
|
|
#endif
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
}
|
|
|
|
if (ompi_proc_local_proc->proc_nodeid == proc->proc_nodeid) {
|
2007-08-09 22:53:28 +04:00
|
|
|
proc->proc_flags |= OMPI_PROC_FLAG_LOCAL;
|
|
|
|
}
|
|
|
|
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
/* Save the hostname. The dss code will have strdup'ed this
|
|
|
|
for us -- no need to do so again */
|
|
|
|
proc->proc_hostname = hostname;
|
2005-09-01 19:05:03 +04:00
|
|
|
}
|
2005-08-05 22:03:30 +04:00
|
|
|
|
2007-08-20 20:47:13 +04:00
|
|
|
out:
|
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
|
|
|
return ret;
|
2004-02-13 16:56:55 +03:00
|
|
|
}
|
|
|
|
|
2007-08-09 22:53:28 +04:00
|
|
|
|
2004-12-02 16:28:10 +03:00
|
|
|
int ompi_proc_finalize (void)
|
|
|
|
{
|
|
|
|
ompi_proc_t *proc, *nextproc, *endproc;
|
|
|
|
|
2005-07-03 20:22:16 +04:00
|
|
|
proc = (ompi_proc_t*)opal_list_get_first(&ompi_proc_list);
|
|
|
|
nextproc = (ompi_proc_t*)opal_list_get_next(proc);
|
|
|
|
endproc = (ompi_proc_t*)opal_list_get_end(&ompi_proc_list);
|
2004-12-02 16:28:10 +03:00
|
|
|
|
|
|
|
OBJ_RELEASE(proc);
|
|
|
|
while ( nextproc != endproc ) {
|
2005-07-13 00:25:47 +04:00
|
|
|
proc = nextproc;
|
|
|
|
nextproc = (ompi_proc_t *)opal_list_get_next(proc);
|
|
|
|
OBJ_RELEASE(proc);
|
2004-12-02 16:28:10 +03:00
|
|
|
}
|
|
|
|
OBJ_DESTRUCT(&ompi_proc_list);
|
|
|
|
|
|
|
|
return OMPI_SUCCESS;
|
|
|
|
}
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t** ompi_proc_world(size_t *size)
|
2004-02-13 16:56:55 +03:00
|
|
|
{
|
2005-07-15 02:43:01 +04:00
|
|
|
ompi_proc_t **procs;
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t *proc;
|
2004-02-13 16:56:55 +03:00
|
|
|
size_t count = 0;
|
2005-07-15 02:43:01 +04:00
|
|
|
orte_ns_cmp_bitmask_t mask;
|
|
|
|
orte_process_name_t my_name;
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2005-07-15 02:43:01 +04:00
|
|
|
/* check bozo case */
|
|
|
|
if (NULL == ompi_proc_local_proc) {
|
2004-02-13 16:56:55 +03:00
|
|
|
return NULL;
|
2005-07-15 02:43:01 +04:00
|
|
|
}
|
|
|
|
mask = ORTE_NS_CMP_JOBID;
|
|
|
|
my_name = ompi_proc_local_proc->proc_name;
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2005-07-15 02:43:01 +04:00
|
|
|
/* First count how many match this jobid */
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2005-09-01 05:07:30 +04:00
|
|
|
for (proc = (ompi_proc_t*)opal_list_get_first(&ompi_proc_list);
|
2005-07-15 02:43:01 +04:00
|
|
|
proc != (ompi_proc_t*)opal_list_get_end(&ompi_proc_list);
|
|
|
|
proc = (ompi_proc_t*)opal_list_get_next(proc)) {
|
2008-02-28 04:57:57 +03:00
|
|
|
if (OPAL_EQUAL == orte_util_compare_name_fields(mask, &proc->proc_name, &my_name)) {
|
2005-07-15 02:43:01 +04:00
|
|
|
++count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* allocate an array */
|
|
|
|
procs = (ompi_proc_t**) malloc(count * sizeof(ompi_proc_t*));
|
|
|
|
if (NULL == procs) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* now save only the procs that match this jobid */
|
|
|
|
count = 0;
|
2005-09-01 05:07:30 +04:00
|
|
|
for (proc = (ompi_proc_t*)opal_list_get_first(&ompi_proc_list);
|
2005-07-15 02:43:01 +04:00
|
|
|
proc != (ompi_proc_t*)opal_list_get_end(&ompi_proc_list);
|
|
|
|
proc = (ompi_proc_t*)opal_list_get_next(proc)) {
|
2008-02-28 04:57:57 +03:00
|
|
|
if (OPAL_EQUAL == orte_util_compare_name_fields(mask, &proc->proc_name, &my_name)) {
|
2005-07-15 02:43:01 +04:00
|
|
|
procs[count++] = proc;
|
|
|
|
}
|
2004-02-13 16:56:55 +03:00
|
|
|
}
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
2005-07-15 02:43:01 +04:00
|
|
|
|
2004-02-13 16:56:55 +03:00
|
|
|
*size = count;
|
|
|
|
return procs;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t** ompi_proc_all(size_t* size)
|
2004-02-13 16:56:55 +03:00
|
|
|
{
|
2005-09-01 05:07:30 +04:00
|
|
|
ompi_proc_t **procs =
|
2005-07-03 20:22:16 +04:00
|
|
|
(ompi_proc_t**) malloc(opal_list_get_size(&ompi_proc_list) * sizeof(ompi_proc_t*));
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t *proc;
|
2004-02-13 16:56:55 +03:00
|
|
|
size_t count = 0;
|
|
|
|
|
2005-07-15 02:43:01 +04:00
|
|
|
if (NULL == procs) {
|
2004-02-13 16:56:55 +03:00
|
|
|
return NULL;
|
2005-07-15 02:43:01 +04:00
|
|
|
}
|
2004-02-13 16:56:55 +03:00
|
|
|
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2005-09-01 05:07:30 +04:00
|
|
|
for(proc = (ompi_proc_t*)opal_list_get_first(&ompi_proc_list);
|
2005-07-03 20:22:16 +04:00
|
|
|
proc != (ompi_proc_t*)opal_list_get_end(&ompi_proc_list);
|
|
|
|
proc = (ompi_proc_t*)opal_list_get_next(proc)) {
|
2004-02-13 16:56:55 +03:00
|
|
|
OBJ_RETAIN(proc);
|
|
|
|
procs[count++] = proc;
|
|
|
|
}
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
2004-02-13 16:56:55 +03:00
|
|
|
*size = count;
|
|
|
|
return procs;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
ompi_proc_t** ompi_proc_self(size_t* size)
|
2004-02-13 16:56:55 +03:00
|
|
|
{
|
2004-10-18 20:11:14 +04:00
|
|
|
ompi_proc_t **procs = (ompi_proc_t**) malloc(sizeof(ompi_proc_t*));
|
2005-07-15 02:43:01 +04:00
|
|
|
if (NULL == procs) {
|
2004-02-13 16:56:55 +03:00
|
|
|
return NULL;
|
2005-07-15 02:43:01 +04:00
|
|
|
}
|
2004-06-07 19:33:53 +04:00
|
|
|
OBJ_RETAIN(ompi_proc_local_proc);
|
|
|
|
*procs = ompi_proc_local_proc;
|
2004-02-13 16:56:55 +03:00
|
|
|
*size = 1;
|
|
|
|
return procs;
|
|
|
|
}
|
|
|
|
|
2005-03-14 23:57:21 +03:00
|
|
|
ompi_proc_t * ompi_proc_find ( const orte_process_name_t * name )
|
2004-05-18 01:28:32 +04:00
|
|
|
{
|
2004-09-17 14:10:24 +04:00
|
|
|
ompi_proc_t *proc, *rproc=NULL;
|
2005-03-14 23:57:21 +03:00
|
|
|
orte_ns_cmp_bitmask_t mask;
|
2004-05-18 01:28:32 +04:00
|
|
|
|
|
|
|
/* return the proc-struct which matches this jobid+process id */
|
2007-07-20 06:34:29 +04:00
|
|
|
mask = ORTE_NS_CMP_JOBID | ORTE_NS_CMP_VPID;
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2005-09-01 05:07:30 +04:00
|
|
|
for(proc = (ompi_proc_t*)opal_list_get_first(&ompi_proc_list);
|
2005-07-03 20:22:16 +04:00
|
|
|
proc != (ompi_proc_t*)opal_list_get_end(&ompi_proc_list);
|
|
|
|
proc = (ompi_proc_t*)opal_list_get_next(proc)) {
|
2008-02-28 04:57:57 +03:00
|
|
|
if (OPAL_EQUAL == orte_util_compare_name_fields(mask, &proc->proc_name, name)) {
|
2005-03-14 23:57:21 +03:00
|
|
|
rproc = proc;
|
|
|
|
break;
|
|
|
|
}
|
2004-05-18 01:28:32 +04:00
|
|
|
}
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
2004-09-17 14:10:24 +04:00
|
|
|
return rproc;
|
2004-05-18 01:28:32 +04:00
|
|
|
}
|
2004-07-01 18:49:54 +04:00
|
|
|
|
2004-08-04 21:05:22 +04:00
|
|
|
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
static ompi_proc_t *
|
|
|
|
ompi_proc_find_and_add(const orte_process_name_t * name, bool* isnew)
|
2004-09-17 14:10:24 +04:00
|
|
|
{
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
ompi_proc_t *proc, *rproc = NULL;
|
2005-03-14 23:57:21 +03:00
|
|
|
orte_ns_cmp_bitmask_t mask;
|
2004-09-17 14:10:24 +04:00
|
|
|
|
|
|
|
/* return the proc-struct which matches this jobid+process id */
|
2007-07-20 06:34:29 +04:00
|
|
|
mask = ORTE_NS_CMP_JOBID | ORTE_NS_CMP_VPID;
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2005-09-01 05:07:30 +04:00
|
|
|
for(proc = (ompi_proc_t*)opal_list_get_first(&ompi_proc_list);
|
2005-07-03 20:22:16 +04:00
|
|
|
proc != (ompi_proc_t*)opal_list_get_end(&ompi_proc_list);
|
|
|
|
proc = (ompi_proc_t*)opal_list_get_next(proc)) {
|
2008-02-28 04:57:57 +03:00
|
|
|
if (OPAL_EQUAL == orte_util_compare_name_fields(mask, &proc->proc_name, name)) {
|
2005-03-14 23:57:21 +03:00
|
|
|
rproc = proc;
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
*isnew = false;
|
2005-03-14 23:57:21 +03:00
|
|
|
break;
|
|
|
|
}
|
2004-09-17 14:10:24 +04:00
|
|
|
}
|
|
|
|
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
if (NULL == rproc) {
|
2004-10-25 23:52:37 +04:00
|
|
|
*isnew = true;
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
rproc = OBJ_NEW(ompi_proc_t);
|
|
|
|
if (NULL != rproc) {
|
|
|
|
rproc->proc_name = *name;
|
|
|
|
}
|
|
|
|
/* caller had better fill in the rest of the proc, or there's
|
|
|
|
going to be pain later... */
|
2004-09-17 14:10:24 +04:00
|
|
|
}
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
|
|
|
|
2004-09-17 14:10:24 +04:00
|
|
|
return rproc;
|
|
|
|
}
|
|
|
|
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
|
|
|
int
|
2008-02-28 04:57:57 +03:00
|
|
|
ompi_proc_pack(ompi_proc_t **proclist, int proclistsize, opal_buffer_t* buf)
|
2004-08-04 21:05:22 +04:00
|
|
|
{
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
int i, rc;
|
|
|
|
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
2004-08-04 21:05:22 +04:00
|
|
|
for (i=0; i<proclistsize; i++) {
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.pack(buf, &(proclist[i]->proc_name), 1, ORTE_NAME);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
if(rc != ORTE_SUCCESS) {
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ORTE_ERROR_LOG(rc);
|
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
|
|
|
return rc;
|
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.pack(buf, &(proclist[i]->proc_nodeid), 1, ORTE_VPID);
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if(rc != ORTE_SUCCESS) {
|
|
|
|
ORTE_ERROR_LOG(rc);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
|
|
|
return rc;
|
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.pack(buf, &(proclist[i]->proc_arch), 1, OPAL_UINT32);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
if(rc != ORTE_SUCCESS) {
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ORTE_ERROR_LOG(rc);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
|
|
|
return rc;
|
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.pack(buf, &(proclist[i]->proc_hostname), 1, OPAL_STRING);
|
2006-03-05 14:18:19 +03:00
|
|
|
if(rc != ORTE_SUCCESS) {
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ORTE_ERROR_LOG(rc);
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
2005-03-14 23:57:21 +03:00
|
|
|
return rc;
|
|
|
|
}
|
2004-08-04 21:05:22 +04:00
|
|
|
}
|
2005-07-04 02:45:48 +04:00
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
2004-08-04 21:05:22 +04:00
|
|
|
return OMPI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
int
|
2008-02-28 04:57:57 +03:00
|
|
|
ompi_proc_unpack(opal_buffer_t* buf,
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
int proclistsize, ompi_proc_t ***proclist,
|
|
|
|
int *newproclistsize, ompi_proc_t ***newproclist)
|
2004-08-04 21:05:22 +04:00
|
|
|
{
|
|
|
|
int i;
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
size_t newprocs_len = 0;
|
|
|
|
ompi_proc_t **plist=NULL, **newprocs = NULL;
|
2004-10-25 23:52:37 +04:00
|
|
|
|
2005-07-15 02:43:01 +04:00
|
|
|
/* do not free plist *ever*, since it is used in the remote group
|
|
|
|
structure of a communicator */
|
2004-09-16 14:07:14 +04:00
|
|
|
plist = (ompi_proc_t **) calloc (proclistsize, sizeof (ompi_proc_t *));
|
2004-08-04 21:05:22 +04:00
|
|
|
if ( NULL == plist ) {
|
|
|
|
return OMPI_ERR_OUT_OF_RESOURCE;
|
|
|
|
}
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
/* free this on the way out */
|
|
|
|
newprocs = (ompi_proc_t **) calloc (proclistsize, sizeof (ompi_proc_t *));
|
|
|
|
if (NULL == newprocs) {
|
|
|
|
return OMPI_ERR_OUT_OF_RESOURCE;
|
|
|
|
}
|
2004-08-04 21:05:22 +04:00
|
|
|
|
|
|
|
for ( i=0; i<proclistsize; i++ ){
|
2006-08-15 23:54:10 +04:00
|
|
|
orte_std_cntr_t count=1;
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
orte_process_name_t new_name;
|
|
|
|
uint32_t new_arch;
|
|
|
|
char *new_hostname;
|
|
|
|
bool isnew = false;
|
|
|
|
int rc;
|
2008-02-28 04:57:57 +03:00
|
|
|
orte_vpid_t new_nodeid;
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.unpack(buf, &new_name, &count, ORTE_NAME);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
if (rc != ORTE_SUCCESS) {
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ORTE_ERROR_LOG(rc);
|
|
|
|
return rc;
|
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.unpack(buf, &new_nodeid, &count, ORTE_VPID);
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (rc != ORTE_SUCCESS) {
|
|
|
|
ORTE_ERROR_LOG(rc);
|
2005-03-14 23:57:21 +03:00
|
|
|
return rc;
|
2005-07-15 02:43:01 +04:00
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.unpack(buf, &new_arch, &count, OPAL_UINT32);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
if (rc != ORTE_SUCCESS) {
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ORTE_ERROR_LOG(rc);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
return rc;
|
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
rc = opal_dss.unpack(buf, &new_hostname, &count, OPAL_STRING);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
if (rc != ORTE_SUCCESS) {
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
ORTE_ERROR_LOG(rc);
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
plist[i] = ompi_proc_find_and_add(&new_name, &isnew);
|
|
|
|
if (isnew) {
|
|
|
|
newprocs[newprocs_len++] = plist[i];
|
|
|
|
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
plist[i]->proc_nodeid = new_nodeid;
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
plist[i]->proc_arch = new_arch;
|
|
|
|
|
|
|
|
/* if arch is different than mine, create a new convertor for this proc */
|
|
|
|
if (plist[i]->proc_arch != ompi_mpi_local_arch) {
|
2006-12-30 20:13:18 +03:00
|
|
|
#if OMPI_ENABLE_HETEROGENEOUS_SUPPORT
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
OBJ_RELEASE(plist[i]->proc_convertor);
|
|
|
|
plist[i]->proc_convertor = ompi_convertor_create(plist[i]->proc_arch, 0);
|
2006-12-30 20:13:18 +03:00
|
|
|
#else
|
|
|
|
opal_show_help("help-mpi-runtime",
|
|
|
|
"heterogeneous-support-unavailable",
|
|
|
|
true, orte_system_info.nodename,
|
|
|
|
new_hostname == NULL ? "<hostname unavailable>" :
|
|
|
|
new_hostname);
|
|
|
|
return OMPI_ERR_NOT_SUPPORTED;
|
|
|
|
#endif
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
}
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (ompi_proc_local_proc->proc_nodeid == plist[i]->proc_nodeid) {
|
|
|
|
plist[i]->proc_flags |= OMPI_PROC_FLAG_LOCAL;
|
|
|
|
}
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
|
|
|
/* Save the hostname */
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
plist[i]->proc_hostname = new_hostname;
|
2004-10-25 23:52:37 +04:00
|
|
|
}
|
2004-08-04 21:05:22 +04:00
|
|
|
}
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
These changes were mostly captured in a prior RFC (except for #2 below) and are aimed specifically at improving startup performance and setting up the remaining modifications described in that RFC.
The commit has been tested for C/R and Cray operations, and on Odin (SLURM, rsh) and RoadRunner (TM). I tried to update all environments, but obviously could not test them. I know that Windows needs some work, and have highlighted what is know to be needed in the odls process component.
This represents a lot of work by Brian, Tim P, Josh, and myself, with much advice from Jeff and others. For posterity, I have appended a copy of the email describing the work that was done:
As we have repeatedly noted, the modex operation in MPI_Init is the single greatest consumer of time during startup. To-date, we have executed that operation as an ORTE stage gate that held the process until a startup message containing all required modex (and OOB contact info - see #3 below) info could be sent to it. Each process would send its data to the HNP's registry, which assembled and sent the message when all processes had reported in.
In addition, ORTE had taken responsibility for monitoring process status as it progressed through a series of "stage gates". The process reported its status at each gate, and ORTE would then send a "release" message once all procs had reported in.
The incoming changes revamp these procedures in three ways:
1. eliminating the ORTE stage gate system and cleanly delineating responsibility between the OMPI and ORTE layers for MPI init/finalize. The modex stage gate (STG1) has been replaced by a collective operation in the modex itself that performs an allgather on the required modex info. The allgather is implemented using the orte_grpcomm framework since the BTL's are not active at that point. At the moment, the grpcomm framework only has a "basic" component analogous to OMPI's "basic" coll framework - I would recommend that the MPI team create additional, more advanced components to improve performance of this step.
The other stage gates have been replaced by orte_grpcomm barrier functions. We tried to use MPI barriers instead (since the BTL's are active at that point), but - as we discussed on the telecon - these are not currently true barriers so the job would hang when we fell through while messages were still in process. Note that the grpcomm barrier doesn't actually resolve that problem, but Brian has pointed out that we are unlikely to ever see it violated. Again, you might want to spend a little time on an advanced barrier algorithm as the one in "basic" is very simplistic.
Summarizing this change: ORTE no longer tracks process state nor has direct responsibility for synchronizing jobs. This is now done via collective operations within the MPI layer, albeit using ORTE collective communication services. I -strongly- urge the MPI team to implement advanced collective algorithms to improve the performance of this critical procedure.
2. reducing the volume of data exchanged during modex. Data in the modex consisted of the process name, the name of the node where that process is located (expressed as a string), plus a string representation of all contact info. The nodename was required in order for the modex to determine if the process was local or not - in addition, some people like to have it to print pretty error messages when a connection failed.
The size of this data has been reduced in three ways:
(a) reducing the size of the process name itself. The process name consisted of two 32-bit fields for the jobid and vpid. This is far larger than any current system, or system likely to exist in the near future, can support. Accordingly, the default size of these fields has been reduced to 16-bits, which means you can have 32k procs in each of 32k jobs. Since the daemons must have a vpid, and we require one daemon/node, this also restricts the default configuration to 32k nodes.
To support any future "mega-clusters", a configuration option --enable-jumbo-apps has been added. This option increases the jobid and vpid field sizes to 32-bits. Someday, if necessary, someone can add yet another option to increase them to 64-bits, I suppose.
(b) replacing the string nodename with an integer nodeid. Since we have one daemon/node, the nodeid corresponds to the local daemon's vpid. This replaces an often lengthy string with only 2 (or at most 4) bytes, a substantial reduction.
(c) when the mca param requesting that nodenames be sent to support pretty error messages, a second mca param is now used to request FQDN - otherwise, the domain name is stripped (by default) from the message to save space. If someone wants to combine those into a single param somehow (perhaps with an argument?), they are welcome to do so - I didn't want to alter what people are already using.
While these may seem like small savings, they actually amount to a significant impact when aggregated across the entire modex operation. Since every proc must receive the modex data regardless of the collective used to send it, just reducing the size of the process name removes nearly 400MBytes of communication from a 32k proc job (admittedly, much of this comm may occur in parallel). So it does add up pretty quickly.
3. routing RML messages to reduce connections. The default messaging system remains point-to-point - i.e., each proc opens a socket to every proc it communicates with and sends its messages directly. A new option uses the orteds as routers - i.e., each proc only opens a single socket to its local orted. All messages are sent from the proc to the orted, which forwards the message to the orted on the node where the intended recipient proc is located - that orted then forwards the message to its local proc (the recipient). This greatly reduces the connection storm we have encountered during startup.
It also has the benefit of removing the sharing of every proc's OOB contact with every other proc. The orted routing tables are populated during launch since every orted gets a map of where every proc is being placed. Each proc, therefore, only needs to know the contact info for its local daemon, which is passed in via the environment when the proc is fork/exec'd by the daemon. This alone removes ~50 bytes/process of communication that was in the current STG1 startup message - so for our 32k proc job, this saves us roughly 32k*50 = 1.6MBytes sent to 32k procs = 51GBytes of messaging.
Note that you can use the new routing method by specifying -mca routed tree - if you so desire. This mode will become the default at some point in the future.
There are a few minor additional changes in the commit that I'll just note in passing:
* propagation of command line mca params to the orteds - fixes ticket #1073. See note there for details.
* requiring of "finalize" prior to "exit" for MPI procs - fixes ticket #1144. See note there for details.
* cleanup of some stale header files
This commit was SVN r16364.
2007-10-05 23:48:23 +04:00
|
|
|
if (NULL != newproclistsize) *newproclistsize = newprocs_len;
|
|
|
|
if (NULL != newproclist) {
|
|
|
|
*newproclist = newprocs;
|
|
|
|
} else if (newprocs != NULL) {
|
|
|
|
free(newprocs);
|
|
|
|
}
|
Clean up the way procs are added to the global process list after MPI_INIT:
* Do not add new procs to the global list during modex callback or
when sharing orte names during accept/connect. For modex, we
cache the modex info for later, in case that proc ever does get
added to the global proc list. For accept/connect orte name
exchange between the roots, we only need the orte name, so no
need to add a proc structure anyway. The procs will be added
to the global process list during the proc exchange later in
the wireup process
* Rename proc_get_namebuf and proc_get_proclist to proc_pack
and proc_unpack and extend them to include all information
needed to build that proc struct on a remote node (which
includes ORTE name, architecture, and hostname). Change
unpack to call pml_add_procs for the entire list of new
procs at once, rather than one at a time.
* Remove ompi_proc_find_and_add from the public proc
interface and make it a private function. This function
would add a half-created proc to the global proc list, so
making it harder to call is a good thing.
This means that there's only two ways to add new procs into the global proc list at this time: During MPI_INIT via the call to ompi_proc_init, where my job is added to the list and via ompi_proc_unpack using a buffer from a packed proc list sent to us by someone else. Currently, this is enough to implement MPI semantics. We can extend the interface more if we like, but that may require HNP communication to get the remote proc information and I wanted to avoid that if at all possible.
Refs trac:564
This commit was SVN r12798.
The following Trac tickets were found above:
Ticket 564 --> https://svn.open-mpi.org/trac/ompi/ticket/564
2006-12-07 22:56:54 +03:00
|
|
|
|
2004-08-04 21:05:22 +04:00
|
|
|
*proclist = plist;
|
|
|
|
return OMPI_SUCCESS;
|
|
|
|
}
|
2008-02-28 04:57:57 +03:00
|
|
|
|
|
|
|
int ompi_proc_refresh(void) {
|
|
|
|
ompi_proc_t *proc = NULL;
|
|
|
|
opal_list_item_t *item = NULL;
|
|
|
|
orte_vpid_t i = 0;
|
|
|
|
int rc;
|
|
|
|
uint32_t ui32;
|
|
|
|
|
|
|
|
OPAL_THREAD_LOCK(&ompi_proc_lock);
|
|
|
|
|
|
|
|
for( item = opal_list_get_first(&ompi_proc_list), i = 0;
|
|
|
|
item != opal_list_get_end(&ompi_proc_list);
|
|
|
|
item = opal_list_get_next(item), ++i ) {
|
|
|
|
proc = (ompi_proc_t*)item;
|
|
|
|
|
|
|
|
/* Does not change: orte_process_info.num_procs */
|
|
|
|
/* Does not change: proc->proc_name.vpid */
|
|
|
|
proc->proc_name.jobid = ORTE_PROC_MY_NAME->jobid;
|
|
|
|
if( i == ORTE_PROC_MY_NAME->vpid ) {
|
|
|
|
ompi_proc_local_proc = proc;
|
|
|
|
proc->proc_flags |= OMPI_PROC_FLAG_LOCAL;
|
|
|
|
} else {
|
|
|
|
proc->proc_flags = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fill in our local information */
|
|
|
|
rc = ompi_arch_compute_local_id(&ui32);
|
|
|
|
if (OMPI_SUCCESS != rc) {
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
ompi_proc_local_proc->proc_nodeid = orte_system_info.nodeid;
|
|
|
|
ompi_proc_local_proc->proc_arch = ui32;
|
|
|
|
if (ompi_mpi_keep_peer_hostnames) {
|
|
|
|
if (ompi_mpi_keep_fqdn_hostnames) {
|
|
|
|
/* use the entire FQDN name */
|
|
|
|
ompi_proc_local_proc->proc_hostname = strdup(orte_system_info.nodename);
|
|
|
|
} else {
|
|
|
|
/* use the unqualified name */
|
|
|
|
char *tmp, *ptr;
|
|
|
|
tmp = strdup(orte_system_info.nodename);
|
|
|
|
if (NULL != (ptr = strchr(tmp, '.'))) {
|
|
|
|
*ptr = '\0';
|
|
|
|
}
|
|
|
|
ompi_proc_local_proc->proc_hostname = strdup(tmp);
|
|
|
|
free(tmp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OPAL_THREAD_UNLOCK(&ompi_proc_lock);
|
|
|
|
|
2008-03-05 07:57:23 +03:00
|
|
|
rc = ompi_proc_publish_info();
|
|
|
|
|
2008-02-28 04:57:57 +03:00
|
|
|
return rc;
|
|
|
|
}
|