1
1
openmpi/ompi/mca/coll/tuned/coll_tuned_reduce.c

550 строки
23 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2006 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include "mpi.h"
#include "ompi/constants.h"
#include "ompi/datatype/datatype.h"
#include "ompi/communicator/communicator.h"
#include "ompi/mca/coll/coll.h"
#include "ompi/mca/coll/base/coll_tags.h"
#include "ompi/mca/pml/pml.h"
#include "ompi/op/op.h"
#include "coll_tuned.h"
#include "coll_tuned_topo.h"
/**
* This is a generic implementation of the reduce protocol. It used the tree
* provided as an argument and execute all operations using a segment of
* count times a datatype.
* For the last communication it will update the count in order to limit
* th number of datatype to the original count (original_count)
*/
int ompi_coll_tuned_reduce_generic( void* sendbuf, void* recvbuf, int original_count,
ompi_datatype_t* datatype, ompi_op_t* op,
int root, ompi_communicator_t* comm,
ompi_coll_tree_t* tree, int count_by_segment )
{
char *inbuf[2] = {(char*)NULL, (char*)NULL};
char *local_op_buffer, *accumbuf = NULL, *sendtmpbuf;
ptrdiff_t extent, lower_bound;
size_t typelng, realsegsize;
ompi_request_t* reqs[2] = {MPI_REQUEST_NULL, MPI_REQUEST_NULL};
int num_segments, line, ret, segindex, i, rank;
int recvcount, prevcount, inbi, previnbi;
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_get_extent( datatype, &lower_bound, &extent );
ompi_ddt_type_size( datatype, &typelng );
num_segments = (original_count + count_by_segment - 1) / count_by_segment;
realsegsize = count_by_segment * extent;
sendtmpbuf = (char*) sendbuf;
if( sendbuf == MPI_IN_PLACE ) {
sendtmpbuf = (char *)recvbuf;
}
rank = ompi_comm_rank(comm);
/* non-leaf nodes - wait for children to send me data & forward up (if needed) */
if( tree->tree_nextsize > 0 ) {
/* handle non existant recv buffer (i.e. its NULL.. like basic allreduce uses!) */
accumbuf = (char*)recvbuf;
if( NULL == accumbuf ) {
accumbuf = (char*)malloc(realsegsize * num_segments); /* TO BE OPTIMIZED */
if (accumbuf == NULL) { line = __LINE__; ret = -1; goto error_hndl; }
}
/* Allocate two buffers for incoming segments */
inbuf[0] = (char*) malloc(realsegsize);
if( inbuf[0] == NULL ) { line = __LINE__; ret = -1; goto error_hndl; }
/* if there is chance to overlap communication -
allocate second buffer */
if( (num_segments > 1) || (tree->tree_nextsize > 1) ) {
inbuf[1] = (char*) malloc(realsegsize);
if( inbuf[1] == NULL ) { line = __LINE__; ret = -1; goto error_hndl;}
} else {
inbuf[1] = NULL;
}
/* reset input buffer index and receive count */
inbi = 0;
recvcount = 0;
/* for each segment */
for( segindex = 0; segindex <= num_segments; segindex++ ) {
prevcount = recvcount;
/* recvcount - number of elements in current segment */
recvcount = count_by_segment;
if( segindex == (num_segments-1) )
recvcount = original_count - count_by_segment * segindex;
/* for each child */
for( i = 0; i < tree->tree_nextsize; i++ ) {
/**
* We try to overlap communication:
* either with next segment or with the next child
*/
/* post irecv for current segindex on current child */
if( segindex < num_segments ) {
void* local_recvbuf = inbuf[inbi];
if( 0 == i ) {
/* for the first step (1st child per segment) we might be able to
* irecv directly into the accumulate buffer so that we can
* reduce(op) this with our sendbuf in one step as ompi_op_reduce
* only has two buffer pointers, this avoids an extra memory copy.
*
* BUT if we are root and are USING MPI_IN_PLACE this is wrong ek!
* check for root might not be needed as it should be checked higher up
*/
if( !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
local_recvbuf = accumbuf + segindex * realsegsize;
}
}
ret = MCA_PML_CALL(irecv(local_recvbuf, recvcount,datatype, tree->tree_next[i],
MCA_COLL_BASE_TAG_REDUCE, comm, &reqs[inbi]));
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
}
/* wait for previous req to complete, if any */
previnbi = (inbi+1) % 2;
/* wait on data from last child for previous segment */
ret = ompi_request_wait_all( 1, &reqs[previnbi], MPI_STATUSES_IGNORE );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
local_op_buffer = inbuf[previnbi];
if( i > 0 ) {
/* our first operation is to combine our own [sendbuf] data with the data
* we recvd from down stream (but only if we are not root and not using
* MPI_IN_PLACE)
*/
if( 1 == i ) {
if( !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
local_op_buffer = sendtmpbuf + segindex * realsegsize;
}
}
/* apply operation */
ompi_op_reduce(op, local_op_buffer, accumbuf+segindex*realsegsize, recvcount, datatype );
} else if ( segindex > 0 ) {
2006-10-24 02:29:17 +04:00
void* accumulator = accumbuf + (segindex-1) * realsegsize;
if( tree->tree_nextsize <= 1 ) {
if( !((MPI_IN_PLACE == sendbuf) && (rank == tree->tree_root)) ) {
local_op_buffer = sendtmpbuf+(segindex-1)*realsegsize;
}
}
2006-10-24 02:29:17 +04:00
ompi_op_reduce(op, local_op_buffer, accumulator, prevcount, datatype );
2006-10-24 02:29:17 +04:00
/* all reduced on available data this step (i) complete, pass to
* the next process unless your the root
*/
if (rank != tree->tree_root) {
/* send combined/accumulated data to parent */
2006-10-24 02:29:17 +04:00
ret = MCA_PML_CALL( send( accumulator, prevcount, datatype,
tree->tree_prev, MCA_COLL_BASE_TAG_REDUCE,
2006-10-24 02:29:17 +04:00
MCA_PML_BASE_SEND_STANDARD, comm) );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
}
/* we stop when segindex = number of segments (i.e. we do num_segment+1 steps to allow for pipelining */
if (segindex == num_segments) break;
}
/* update input buffer index */
inbi = previnbi;
} /* end of for each child */
} /* end of for each segment */
/* clean up */
if( inbuf[0] != NULL) free(inbuf[0]);
if( inbuf[1] != NULL) free(inbuf[1]);
if( NULL == recvbuf ) free(accumbuf);
}
/* leaf nodes */
else {
/* Send segmented data to parents */
segindex = 0;
while( original_count > 0 ) {
if( original_count < count_by_segment ) count_by_segment = original_count;
ret = MCA_PML_CALL( send((char*)sendbuf + segindex * realsegsize, count_by_segment,
datatype, tree->tree_prev,
MCA_COLL_BASE_TAG_REDUCE, MCA_PML_BASE_SEND_STANDARD, comm) );
if (ret != MPI_SUCCESS) { line = __LINE__; goto error_hndl; }
segindex++;
original_count -= count_by_segment;
}
}
return OMPI_SUCCESS;
error_hndl: /* error handler */
OPAL_OUTPUT (( ompi_coll_tuned_stream, "ERROR_HNDL: node %d file %s line %d error %d\n", rank, __FILE__, line, ret ));
if( inbuf[0] != NULL ) free(inbuf[0]);
if( inbuf[1] != NULL ) free(inbuf[1]);
if( (NULL == recvbuf) && (NULL != accumbuf) ) free(accumbuf);
return ret;
}
/* Attention: this version of the reduce operations does not
work for:
- non-commutative operations
- segment sizes which are not multiplies of the extent of the datatype
meaning that at least one datatype must fit in the segment !
*/
int ompi_coll_tuned_reduce_intra_chain( void *sendbuf, void *recvbuf, int count,
ompi_datatype_t* datatype, ompi_op_t* op,
int root, ompi_communicator_t* comm, uint32_t segsize,
int fanout)
{
int segcount;
size_t typelng;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_chain rank %d fo %d ss %5d", ompi_comm_rank(comm), fanout, segsize));
COLL_TUNED_UPDATE_CHAIN( comm, root, fanout );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
if( segsize > typelng ) {
segcount = (int)(segsize / typelng);
} else {
segcount = count;
}
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm,
comm->c_coll_selected_data->cached_chain, segcount );
}
int ompi_coll_tuned_reduce_intra_pipeline( void *sendbuf, void *recvbuf,
int count, ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm, uint32_t segsize )
{
int segcount;
size_t typelng;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_pipeline rank %d ss %5d",
ompi_comm_rank(comm), segsize));
COLL_TUNED_UPDATE_PIPELINE( comm, root );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
if( segsize > typelng ) {
segcount = (int)(segsize / typelng);
} else {
segcount = count;
}
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm,
comm->c_coll_selected_data->cached_pipeline, segcount );
}
int ompi_coll_tuned_reduce_intra_binary( void *sendbuf, void *recvbuf,
int count, ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm, uint32_t segsize )
{
int segcount;
size_t typelng;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_binary rank %d ss %5d",
ompi_comm_rank(comm), segsize));
COLL_TUNED_UPDATE_BINTREE( comm, root );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
if( segsize > typelng ) {
segcount = (int)(segsize / typelng);
} else {
segcount = count;
}
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm,
comm->c_coll_selected_data->cached_bintree, segcount );
}
int ompi_coll_tuned_reduce_intra_binomial( void *sendbuf, void *recvbuf,
int count, ompi_datatype_t* datatype,
ompi_op_t* op, int root,
ompi_communicator_t* comm, uint32_t segsize )
{
int segcount;
size_t typelng;
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_binomial rank %d ss %5d",
ompi_comm_rank(comm), segsize));
COLL_TUNED_UPDATE_BMTREE( comm, root );
/**
* Determine number of segments and number of elements
* sent per operation
*/
ompi_ddt_type_size( datatype, &typelng );
if( segsize > typelng ) {
segcount = (int)(segsize / typelng);
} else {
segcount = count;
}
return ompi_coll_tuned_reduce_generic( sendbuf, recvbuf, count, datatype, op, root, comm,
comm->c_coll_selected_data->cached_bmtree, segcount );
}
/*
* Linear functions are copied from the BASIC coll module
* they do not segment the message and are simple implementations
* but for some small number of nodes and/or small data sizes they
* are just as fast as tuned/tree based segmenting operations
* and as such may be selected by the decision functions
* These are copied into this module due to the way we select modules
* in V1. i.e. in V2 we will handle this differently and so will not
* have to duplicate code.
* GEF Oct05 after asking Jeff.
*/
/* copied function (with appropriate renaming) starts here */
/*
* reduce_lin_intra
*
* Function: - reduction using O(N) algorithm
* Accepts: - same as MPI_Reduce()
* Returns: - MPI_SUCCESS or error code
*/
int
ompi_coll_tuned_reduce_intra_basic_linear(void *sbuf, void *rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op,
int root, struct ompi_communicator_t *comm)
{
int i, rank, err, size;
ptrdiff_t true_lb, true_extent, lb, extent;
char *free_buffer = NULL;
char *pml_buffer = NULL;
char *inplace_temp = NULL;
char *inbuf;
/* Initialize */
rank = ompi_comm_rank(comm);
size = ompi_comm_size(comm);
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_basic_linear rank %d", rank));
/* If not root, send data to the root. */
if (rank != root) {
err = MCA_PML_CALL(send(sbuf, count, dtype, root,
MCA_COLL_BASE_TAG_REDUCE,
MCA_PML_BASE_SEND_STANDARD, comm));
return err;
}
/* see discussion in ompi_coll_basic_reduce_lin_intra about extent and true extend */
/* for reducing buffer allocation lengths.... */
ompi_ddt_get_extent(dtype, &lb, &extent);
ompi_ddt_get_true_extent(dtype, &true_lb, &true_extent);
if (MPI_IN_PLACE == sbuf) {
sbuf = rbuf;
inplace_temp = (char*)malloc(true_extent + (count - 1) * extent);
if (NULL == inplace_temp) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
rbuf = inplace_temp - lb;
}
if (size > 1) {
free_buffer = (char*)malloc(true_extent + (count - 1) * extent);
if (NULL == free_buffer) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
pml_buffer = free_buffer - lb;
}
/* Initialize the receive buffer. */
if (rank == (size - 1)) {
err = ompi_ddt_copy_content_same_ddt(dtype, count, (char*)rbuf, (char*)sbuf);
} else {
err = MCA_PML_CALL(recv(rbuf, count, dtype, size - 1,
MCA_COLL_BASE_TAG_REDUCE, comm,
MPI_STATUS_IGNORE));
}
if (MPI_SUCCESS != err) {
if (NULL != free_buffer) {
free(free_buffer);
}
return err;
}
/* Loop receiving and calling reduction function (C or Fortran). */
for (i = size - 2; i >= 0; --i) {
if (rank == i) {
inbuf = (char*)sbuf;
} else {
err = MCA_PML_CALL(recv(pml_buffer, count, dtype, i,
MCA_COLL_BASE_TAG_REDUCE, comm,
MPI_STATUS_IGNORE));
if (MPI_SUCCESS != err) {
if (NULL != free_buffer) {
free(free_buffer);
}
return err;
}
inbuf = pml_buffer;
}
/* Perform the reduction */
ompi_op_reduce(op, inbuf, rbuf, count, dtype);
}
if (NULL != inplace_temp) {
err = ompi_ddt_copy_content_same_ddt(dtype, count, (char*)sbuf, inplace_temp);
free(inplace_temp);
}
if (NULL != free_buffer) {
free(free_buffer);
}
/* All done */
return MPI_SUCCESS;
}
/* copied function (with appropriate renaming) ends here */
/**
* The following are used by dynamic and forced rules
*
* publish details of each algorithm and if its forced/fixed/locked in
* as you add methods/algorithms you must update this and the query/map routines
*
* this routine is called by the component only
* this makes sure that the mca parameters are set to their initial values and perms
* module does not call this they call the forced_getvalues routine instead
*/
int ompi_coll_tuned_reduce_intra_check_forced_init (coll_tuned_force_algorithm_mca_param_indices_t *mca_param_indices)
{
int rc;
int max_alg = 3;
ompi_coll_tuned_forced_max_algorithms[REDUCE] = max_alg;
rc = mca_base_param_reg_int (&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_count",
"Number of reduce algorithms available",
false, true, max_alg, NULL);
2006-10-24 02:29:17 +04:00
mca_param_indices->algorithm_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm",
"Which reduce algorithm is used. Can be locked down to choice of: 0 ignore, 1 linear, 2 chain, 3 pipeline",
false, false, 0, NULL);
mca_param_indices->segsize_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_segmentsize",
"Segment size in bytes used by default for reduce algorithms. Only has meaning if algorithm is forced and supports segmenting. 0 bytes means no segmentation.",
false, false, 0, NULL);
mca_param_indices->tree_fanout_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_tree_fanout",
"Fanout for n-tree used for reduce algorithms. Only has meaning if algorithm is forced and supports n-tree topo based operation.",
false, false,
ompi_coll_tuned_init_tree_fanout, /* get system wide default */
NULL);
mca_param_indices->chain_fanout_param_index
= mca_base_param_reg_int(&mca_coll_tuned_component.super.collm_version,
"reduce_algorithm_chain_fanout",
"Fanout for chains used for reduce algorithms. Only has meaning if algorithm is forced and supports chain topo based operation.",
false, false,
ompi_coll_tuned_init_chain_fanout, /* get system wide default */
NULL);
return (MPI_SUCCESS);
}
int ompi_coll_tuned_reduce_intra_do_forced(void *sbuf, void* rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op, int root,
struct ompi_communicator_t *comm)
{
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_forced selected algorithm %d",
comm->c_coll_selected_data->user_forced[REDUCE].algorithm));
switch (comm->c_coll_selected_data->user_forced[REDUCE].algorithm) {
case (0): return ompi_coll_tuned_reduce_intra_dec_fixed (sbuf, rbuf, count, dtype, op, root, comm);
case (1): return ompi_coll_tuned_reduce_intra_basic_linear (sbuf, rbuf, count, dtype, op, root, comm);
case (2): return ompi_coll_tuned_reduce_intra_chain (sbuf, rbuf, count, dtype, op, root, comm,
comm->c_coll_selected_data->user_forced[REDUCE].segsize,
comm->c_coll_selected_data->user_forced[REDUCE].chain_fanout);
case (3): return ompi_coll_tuned_reduce_intra_pipeline (sbuf, rbuf, count, dtype, op, root, comm,
comm->c_coll_selected_data->user_forced[REDUCE].segsize);
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_forced attempt to select algorithm %d when only 0-%d is valid?",
comm->c_coll_selected_data->user_forced[REDUCE].algorithm, ompi_coll_tuned_forced_max_algorithms[REDUCE]));
return (MPI_ERR_ARG);
} /* switch */
}
int ompi_coll_tuned_reduce_intra_do_this(void *sbuf, void* rbuf, int count,
struct ompi_datatype_t *dtype,
struct ompi_op_t *op, int root,
struct ompi_communicator_t *comm,
int algorithm, int faninout, int segsize)
{
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_this selected algorithm %d topo faninout %d segsize %d",
algorithm, faninout, segsize));
switch (algorithm) {
case (0): return ompi_coll_tuned_reduce_intra_dec_fixed (sbuf, rbuf, count, dtype, op, root, comm);
case (1): return ompi_coll_tuned_reduce_intra_basic_linear (sbuf, rbuf, count, dtype, op, root, comm);
case (2): return ompi_coll_tuned_reduce_intra_chain (sbuf, rbuf, count, dtype, op, root, comm,
segsize, faninout);
case (3): return ompi_coll_tuned_reduce_intra_pipeline (sbuf, rbuf, count, dtype, op, root, comm,
segsize);
default:
OPAL_OUTPUT((ompi_coll_tuned_stream,"coll:tuned:reduce_intra_do_this attempt to select algorithm %d when only 0-%d is valid?",
algorithm, ompi_coll_tuned_forced_max_algorithms[REDUCE]));
return (MPI_ERR_ARG);
} /* switch */
}