1
1
openmpi/src/class/ompi_circular_buffer_fifo.h

415 строки
11 KiB
C
Исходник Обычный вид История

/*
* $HEADER$
*/
#ifndef _OMPI_CIRCULAR_BUFFER_FIFO
#define _OMPI_CIRCULAR_BUFFER_FIFO
#include "include/sys/cache.h"
/** @file
*
* This defines a set of functions to create, and manipulate a FIFO
* set up in a circular buffer. FIFO elements are assumed to be
* pointers. Pointers are written to the head, and read from the
* tail.
*/
/* error code */
#define OMPI_CB_ERROR -1
#define OMPI_CB_FREE (void *) 0
#define OMPI_CB_RESERVED (void *) 1
/*
* Structure used to keep track of the fifo status
*/
struct ompi_cb_fifo_ctl_t {
/* spin-lock for access control */
ompi_lock_data_t lock;
/* current queue index */
volatile unsigned int fifo_index;
/* number of entries that have been used, but not invalidated. used
* for lazy resource reclamation */
volatile unsigned int num_to_clear;
};
typedef struct ompi_cb_fifo_ctl_t ompi_cb_fifo_ctl_t;
/* default settings */
enum {
ompi_default_fifo_size = 512, ompi_lazy_free_frequency = 500
};
/* data structure used to describe the fifo */
struct ompi_cb_fifo_t {
/* size of fifo */
int size;
/* head of queue - where next entry will be written */
ompi_cb_fifo_ctl_t *head;
/* tail of queue - next element to read */
ompi_cb_fifo_ctl_t *tail;
/* mask - to handle wrap around */
unsigned int mask;
/* circular buffer array */
void **queue;
}
/**
* Initialize a fifo
*
* @param size_of_fifo Length of fifo array (IN)
*
* @param fifo_memory_locality_index Locality index to apply to
* the fifo array. Not currently
* in use (IN)
*
* @param tail_memory_locality_index Locality index to apply to the
* head control structure. Not
* currently in use (IN)
*
* @param tail_memory_locality_index Locality index to apply to the
* tail control structure. Not
* currently in use (IN)
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @param memory_allocator Pointer to the memory allocator to use
* to allocate memory for this fifo. (IN)
*
* @returncode Error code
*
*/
int ompi_cb_fifo_init(int size_of_fifo, int fifo_memory_locality_index,
int head_memory_locality_index, int tail_memory_locality_index,
ompi_cb_fifo_ctl_t *fifo, mca_mpool_base_module_t
*memory_allocator)
{
int tmp_size, errorCode = OMPI_SUCCESS;
size_t len_to_allocate,i;
/* verify that size is power of 2, and greatter that 0 - if not,
* round up */
if ( 0 >= size_of_fifo) {
return OMPI_ERROR;
}
tmp_size/=2;
tmp_size*=2;
if( tmp_size != size_of_fifo ) {
size_of_fifo=2*tmp_size;
}
/* set fifo size */
fifo->size = size_of_fifo;
/* this will be used to mask off the higher order bits,
* and use the & operator for the wrap-around */
mask = (size_of_fifo - 1);
/* allocate fifo array */
len_to_allocate = sizeof(void *) * size_of_fifo;
fifo->queue=memory_allocator->mpool_alloc(len_to_allocate,CACHE_LINE_SIZE);
if ( NULL == fifo->queue) {
return ULM_ERR_OUT_OF_RESOURCE;
}
/* initialize the queue entries */
for (i = 0; i < size_of_fifo; i++) {
queue[i] = OMPI_CB_FREE;
}
/* allocate head control structure */
len_to_allocate = sizeof(ompi_cb_fifo_ctl_t);
fifo->head=memory_allocator->mpool_alloc(len_to_allocate,CACHE_LINE_SIZE);
if ( NULL == fifo->head) {
return ULM_ERR_OUT_OF_RESOURCE;
}
/* initialize the head structure */
spinunlock(&(fifo->head.lock));
fifo->head.fifo_index=0;
fifo->head.num_to_clear=0;
/* allocate tail control structure */
len_to_allocate = sizeof(ompi_cb_fifo_ctl_t);
fifo->tail=memory_allocator->mpool_alloc(len_to_allocate,CACHE_LINE_SIZE);
if ( NULL == fifo->tail) {
return ULM_ERR_OUT_OF_RESOURCE;
}
/* initialize the head structure */
spinunlock(&(fifo->tail.lock));
fifo->tail.fifo_index=0;
fifo->tail.num_to_clear=0;
/* return */
return errorCode;
}
/**
* Write pointer to the specified slot
*
* @param slot Slot index (IN)
*
* @param data Pointer value to write in specified slot (IN)
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
*/
int ompi_cb_fifo_write_to_slot(int slot, void* data, ompi_cb_fifo_ctl_t *fifo) {
int wrote_to_slot = OMPI_CB_ERROR;
/* make sure that this slot is already reserved */
if (fifo->queue[slot] == OMPI_CB_RESERVED ) {
fifo->queue[slot] = data;
return slot;
} else {
return wrote_to_slot;
}
}
/**
* Try to write pointer to the head of the queue
*
* @param data Pointer value to write in specified slot (IN)
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
*/
int ompi_cb_fifo_write_to_head(void *data, ompi_cb_fifo_ctl_t *fifo) {
int slot = OMPI_CB_ERROR, index;
spinlock(&(fifo->head.lock));
index = fifo->head->fifo_index;
/* make sure the head is pointing at a free element - avoid wrap
* around */
if (queue[index] == OMPI_CB_FREE) {
slot = index;
fifo->queue[slot] = data;
(fifo->head->fifo_index)++;
(fifo->head->fifo_index) &= fifo->mask;
}
spinunlock(&(fifo->head.lock));
/* return */
return slot;
}
/**
* Try and write pointer ot the head of the queue without locking
* the head structure
*
* Try to write pointer to the head of the queue
*
* @param data Pointer value to write in specified slot (IN)
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
*/
int ompi_cb_fifo_write_to_head_no_lock(void *data, ompi_cb_fifo_ctl_t *fifo)
{
int slot = OMPI_CB_ERROR, index;
index = fifo->head->fifo_index;
/* make sure the head is pointing at a free element - avoid wrap
* around */
if (queue[index] == OMPI_CB_FREE) {
slot = index;
fifo->queue[slot] = data;
(fifo->head->fifo_index)++;
(fifo->head->fifo_index) &= fifo->mask;
}
/* return */
return slot;
}
/**
* Reserve slot in the fifo array
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
* @returncode OMPI_CB_ERROR failed to allocate index
*
*/
int ompi_cb_fifo_get_slot(ompi_cb_fifo_ctl_t *fifo) {
int return_value = OMPI_CB_ERROR,index;
spinlock(&(fifo->head.lock));
index = fifo->head->fifo_index;
/* try and reserve slot */
if (fifo->queue[index] == OMPI_CB_FREE) {
fifo->queue[index] = OMPI_CB_RESERVED;
return_value = index;
(fifo->head->fifo_index)++;
(fifo->head->fifo_index) &= fifo->mask;
}
spinunlock(&(fifo->head.lock));
/* return */
return return_value;
}
/**
* Reserve slot in the fifo array - no locking for thread safety done
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
* @returncode OMPI_CB_ERROR failed to allocate index
*
*/
int ompi_cb_fifo_get_slot_no_lock(ompi_cb_fifo_ctl_t *fifo)
{
int return_value = OMPI_CB_ERROR,index;
index = fifo->head->fifo_index;
/* try and reserve slot */
if (fifo->queue[index] == OMPI_CB_FREE) {
fifo->queue[index] = OMPI_CB_RESERVED;
return_value = index;
(fifo->head->fifo_index)++;
(fifo->head->fifo_index) &= fifo->mask;
}
/* return */
return return_value;
}
/**
* Try to read pointer from the tail of the queue
*
* @param data Pointer to where data was be written (out)
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
*/
int ompi_cb_fifo_read_from_tail(void** data, ompi_cb_fifo_ctl_t *fifo)
{
int read_from_tail = OMPI_CB_ERROR,index = 0,clearIndex, i;
/* check to see that the data is valid */
if ((fifo->queue[fifo->tail->fifo_index] == OMPI_CB_FREE) ||
(fifo->queue[fifo->tail->fifo_index] == OMPI_CB_RESERVED))
{
return OMPI_CB_ERROR;
}
/* lock tail - for thread safety */
spinlock(&(fifo->tail.lock));
/* make sure that there is still data to read - other thread
* may have gotten here first */
if ((fifo->queue[fifo->tail->fifo_index] == OMPI_CB_FREE ) ||
(fifo->queue[fifo->tail->fifo_index] == OMPI_CB_RESERVED )) {
spinunlock(&(fifo->tail.lock);
return OMPI_CB_ERROR;
}
/* set return data */
index = fifo->tail->fifo_index;
*data = fifo->queue[index];
fifo->tail->numToClear++;
/* check to see if time to do a lazy free of queue slots */
if (tail->numToClear == ompi_lazy_free_frequency) {
clearIndex = index - ompi_lazy_free_frequency + 1;
clearIndex &= fifo->mask;
for (i = 0; i < ompi_lazy_free_frequency; i++) {
fifo->queue[clearIndex] = fifo->slot_markded_free;
clearIndex++;
clearIndex &= mask;
}
fifo->tail->numToClear = 0;
}
/* increment counter for later lazy free */
read_from_tail = fifo->tail->fifo_index;
(fifo->tail->fifo_index)++;
(fifo->tail->fifo_index) &= fifo->mask;
/* unlock tail */
spinunlock(&(fifo->tail.lock));
/* return */
return read_from_tail;
}
/**
* Try to read pointer from the tail of the queue - no locking for
* thread safety.
*
* @param data Pointer to where data was be written (out)
*
* @param fifo Pointer to data structure defining this fifo (IN)
*
* @returncode Slot index to which data is written
*
*/
int ompi_cb_fifo_read_from_tail_no_lock(void** data, ompi_cb_fifo_ctl_t *fifo)
{
int read_from_tail = OMPI_CB_ERROR,index = 0,clearIndex, i;
/* check to see that the data is valid */
if ((fifo->queue[fifo->tail->fifo_index] == OMPI_CB_FREE) ||
(fifo->queue[fifo->tail->fifo_index] == OMPI_CB_RESERVED))
{
return OMPI_CB_ERROR;
}
/* lock tail - for thread safety */
/* make sure that there is still data to read - other thread
* may have gotten here first */
if ((fifo->queue[fifo->tail->fifo_index] == OMPI_CB_FREE ) ||
(fifo->queue[fifo->tail->fifo_index] == OMPI_CB_RESERVED )) {
return OMPI_CB_ERROR;
}
/* set return data */
index = fifo->tail->fifo_index;
*data = fifo->queue[index];
fifo->tail->numToClear++;
/* check to see if time to do a lazy free of queue slots */
if (tail->numToClear == ompi_lazy_free_frequency) {
clearIndex = index - ompi_lazy_free_frequency + 1;
clearIndex &= fifo->mask;
for (i = 0; i < ompi_lazy_free_frequency; i++) {
fifo->queue[clearIndex] = fifo->slot_markded_free;
clearIndex++;
clearIndex &= mask;
}
fifo->tail->numToClear = 0;
}
/* increment counter for later lazy free */
read_from_tail = fifo->tail->fifo_index;
(fifo->tail->fifo_index)++;
(fifo->tail->fifo_index) &= fifo->mask;
/* return */
return read_from_tail;
}
#endif /* !_OMPI_CIRCULAR_BUFFER_FIFO */