1
1
openmpi/ompi/mca/btl/openib/btl_openib.c

1907 строки
67 KiB
C
Исходник Обычный вид История

/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */
/*
* Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
* University Research and Technology
* Corporation. All rights reserved.
* Copyright (c) 2004-2011 The University of Tennessee and The University
* of Tennessee Research Foundation. All rights
* reserved.
* Copyright (c) 2004-2005 High Performance Computing Center Stuttgart,
* University of Stuttgart. All rights reserved.
* Copyright (c) 2004-2005 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 2007-2010 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2006-2009 Mellanox Technologies. All rights reserved.
* Copyright (c) 2006-2012 Los Alamos National Security, LLC. All rights
* reserved.
* Copyright (c) 2006-2007 Voltaire All rights reserved.
* Copyright (c) 2008-2012 Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2009 IBM Corporation. All rights reserved.
* $COPYRIGHT$
*
* Additional copyrights may follow
*
* $HEADER$
*/
#include "ompi_config.h"
#include <string.h>
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#include "orte/util/show_help.h"
#include "orte/runtime/orte_globals.h"
#include "opal/class/opal_bitmap.h"
#include "opal/util/output.h"
#include "opal/util/arch.h"
#include "opal/include/opal_stdint.h"
#include "ompi/mca/btl/btl.h"
#include "ompi/mca/btl/base/btl_base_error.h"
#if OPAL_ENABLE_FT_CR == 1
#include "ompi/runtime/ompi_cr.h"
#endif
#include "btl_openib_ini.h"
#include "btl_openib.h"
#include "btl_openib_frag.h"
#include "btl_openib_proc.h"
#include "btl_openib_endpoint.h"
#include "btl_openib_xrc.h"
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
#include "opal/datatype/opal_convertor.h"
#include "ompi/mca/mpool/base/base.h"
#include "ompi/mca/mpool/mpool.h"
#include "ompi/mca/mpool/grdma/mpool_grdma.h"
#include "orte/util/proc_info.h"
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef OPAL_HAVE_HWLOC
#include "opal/mca/hwloc/hwloc.h"
#endif
#ifndef MIN
#define MIN(a,b) ((a)<(b)?(a):(b))
#endif
mca_btl_openib_module_t mca_btl_openib_module = {
{
&mca_btl_openib_component.super,
0, /* max size of first fragment */
0, /* min send fragment size */
0, /* max send fragment size */
0, /* btl_rdma_pipeline_send_length */
0, /* btl_rdma_pipeline_frag_size */
0, /* btl_min_rdma_pipeline_size */
0, /* exclusivity */
0, /* latency */
0, /* bandwidth */
0, /* TODO this should be PUT btl flags */
0, /* segment size */
mca_btl_openib_add_procs,
mca_btl_openib_del_procs,
NULL,
mca_btl_openib_finalize,
/* we need alloc free, pack */
mca_btl_openib_alloc,
mca_btl_openib_free,
mca_btl_openib_prepare_src,
mca_btl_openib_prepare_dst,
mca_btl_openib_send,
mca_btl_openib_sendi, /* send immediate */
mca_btl_openib_put,
mca_btl_openib_get,
mca_btl_base_dump,
NULL, /* mpool */
mca_btl_openib_register_error_cb, /* error call back registration */
mca_btl_openib_ft_event
}
};
char* const mca_btl_openib_transport_name_strings[MCA_BTL_OPENIB_TRANSPORT_SIZE] = {
"MCA_BTL_OPENIB_TRANSPORT_IB",
"MCA_BTL_OPENIB_TRANSPORT_IWARP",
"MCA_BTL_OPENIB_TRANSPORT_RDMAOE",
"MCA_BTL_OPENIB_TRANSPORT_UNKNOWN"
};
static int mca_btl_openib_finalize_resources(struct mca_btl_base_module_t* btl);
void mca_btl_openib_show_init_error(const char *file, int line,
const char *func, const char *dev)
{
if (ENOMEM == errno) {
int ret;
#ifndef __WINDOWS__
struct rlimit limit;
#endif
char *str_limit = NULL;
#if HAVE_DECL_RLIMIT_MEMLOCK
ret = getrlimit(RLIMIT_MEMLOCK, &limit);
#else
ret = -1;
#endif
#ifndef __WINDOWS__
if (0 != ret) {
asprintf(&str_limit, "Unknown");
} else if (limit.rlim_cur == RLIM_INFINITY) {
asprintf(&str_limit, "unlimited");
} else {
asprintf(&str_limit, "%ld", (long)limit.rlim_cur);
}
#endif
orte_show_help("help-mpi-btl-openib.txt", "init-fail-no-mem",
true, orte_process_info.nodename,
file, line, func, dev, str_limit);
if (NULL != str_limit) free(str_limit);
} else {
orte_show_help("help-mpi-btl-openib.txt", "init-fail-create-q",
true, orte_process_info.nodename,
file, line, func, strerror(errno), errno, dev);
}
}
static inline struct ibv_cq *create_cq_compat(struct ibv_context *context,
int cqe, void *cq_context, struct ibv_comp_channel *channel,
int comp_vector)
{
#if OMPI_IBV_CREATE_CQ_ARGS == 3
return ibv_create_cq(context, cqe, channel);
#else
return ibv_create_cq(context, cqe, cq_context, channel, comp_vector);
#endif
}
static int adjust_cq(mca_btl_openib_device_t *device, const int cq)
{
uint32_t cq_size = device->cq_size[cq];
/* make sure we don't exceed the maximum CQ size and that we
* don't size the queue smaller than otherwise requested
*/
if(cq_size < mca_btl_openib_component.ib_cq_size[cq])
cq_size = mca_btl_openib_component.ib_cq_size[cq];
if(cq_size > (uint32_t)device->ib_dev_attr.max_cqe)
cq_size = device->ib_dev_attr.max_cqe;
if(NULL == device->ib_cq[cq]) {
device->ib_cq[cq] = create_cq_compat(device->ib_dev_context, cq_size,
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
#if OMPI_ENABLE_PROGRESS_THREADS == 1
device, device->ib_channel,
#else
NULL, NULL,
#endif
0);
if (NULL == device->ib_cq[cq]) {
mca_btl_openib_show_init_error(__FILE__, __LINE__, "ibv_create_cq",
ibv_get_device_name(device->ib_dev));
return OMPI_ERROR;
}
Update libevent to the 2.0 series, currently at 2.0.7rc. We will update to their final release when it becomes available. Currently known errors exist in unused portions of the libevent code. This revision passes the IBM test suite on a Linux machine and on a standalone Mac. This is a fairly intrusive change, but outside of the moving of opal/event to opal/mca/event, the only changes involved (a) changing all calls to opal_event functions to reflect the new framework instead, and (b) ensuring that all opal_event_t objects are properly constructed since they are now true opal_objects. Note: Shiqing has just returned from vacation and has not yet had a chance to complete the Windows integration. Thus, this commit almost certainly breaks Windows support on the trunk. However, I want this to have a chance to soak for as long as possible before I become less available a week from today (going to be at a class for 5 days, and thus will only be sparingly available) so we can find and fix any problems. Biggest change is moving the libevent code from opal/event to a new opal/mca/event framework. This was done to make it much easier to update libevent in the future. New versions can be inserted as a new component and tested in parallel with the current version until validated, then we can remove the earlier version if we so choose. This is a statically built framework ala installdirs, so only one component will build at a time. There is no selection logic - the sole compiled component simply loads its function pointers into the opal_event struct. I have gone thru the code base and converted all the libevent calls I could find. However, I cannot compile nor test every environment. It is therefore quite likely that errors remain in the system. Please keep an eye open for two things: 1. compile-time errors: these will be obvious as calls to the old functions (e.g., opal_evtimer_new) must be replaced by the new framework APIs (e.g., opal_event.evtimer_new) 2. run-time errors: these will likely show up as segfaults due to missing constructors on opal_event_t objects. It appears that it became a typical practice for people to "init" an opal_event_t by simply using memset to zero it out. This will no longer work - you must either OBJ_NEW or OBJ_CONSTRUCT an opal_event_t. I tried to catch these cases, but may have missed some. Believe me, you'll know when you hit it. There is also the issue of the new libevent "no recursion" behavior. As I described on a recent email, we will have to discuss this and figure out what, if anything, we need to do. This commit was SVN r23925.
2010-10-24 22:35:54 +04:00
#if OMPI_ENABLE_PROGRESS_THREADS == 1
if(ibv_req_notify_cq(device->ib_cq[cq], 0)) {
mca_btl_openib_show_init_error(__FILE__, __LINE__,
"ibv_req_notify_cq",
ibv_get_device_name(device->ib_dev));
return OMPI_ERROR;
}
OPAL_THREAD_LOCK(&device->device_lock);
if (!device->progress) {
int rc;
device->progress = true;
if(OPAL_SUCCESS != (rc = opal_thread_start(&device->thread))) {
BTL_ERROR(("Unable to create progress thread, retval=%d", rc));
return rc;
}
}
OPAL_THREAD_UNLOCK(&device->device_lock);
#endif
}
#ifdef HAVE_IBV_RESIZE_CQ
else if (cq_size > mca_btl_openib_component.ib_cq_size[cq]){
int rc;
rc = ibv_resize_cq(device->ib_cq[cq], cq_size);
/* For ConnectX the resize CQ is not implemented and verbs returns -ENOSYS
* but should return ENOSYS. So it is reason for abs */
if(rc && ENOSYS != abs(rc)) {
BTL_ERROR(("cannot resize completion queue, error: %d", rc));
return OMPI_ERROR;
}
}
#endif
return OMPI_SUCCESS;
}
/* In this function we check if the device supports srq limit
event. We create the temporary srq, post some receive buffers - in
order to prevent srq limit event immediately and call the
"ibv_modify_srq" function. If a return value of the function not
success => our decision that the device doesn't support this
capability. */
static int check_if_device_support_modify_srq(mca_btl_openib_module_t *openib_btl)
{
char buff;
int rc = OMPI_SUCCESS;
struct ibv_srq* dummy_srq = NULL;
struct ibv_srq_attr modify_attr;
struct ibv_sge sge_elem;
struct ibv_recv_wr wr1, wr2, *bad_wr;
struct ibv_srq_init_attr init_attr;
memset(&init_attr, 0, sizeof(struct ibv_srq_init_attr));
init_attr.attr.max_wr = 3;
init_attr.attr.max_sge = 1;
dummy_srq = ibv_create_srq(openib_btl->device->ib_pd, &init_attr);
if(NULL == dummy_srq) {
rc = OMPI_ERROR;
return rc;
}
sge_elem.addr = (uint64_t) &buff;
sge_elem.length = sizeof(buff);
wr1.num_sge = wr2.num_sge = 1;
wr1.sg_list = wr2.sg_list = &sge_elem;
wr1.next = &wr2;
wr2.next = NULL;
if(ibv_post_srq_recv(dummy_srq, &wr1, &bad_wr)) {
rc = OMPI_ERROR;
goto destroy_dummy_srq;
}
modify_attr.max_wr = 2;
modify_attr.max_sge = 1;
modify_attr.srq_limit = 1;
if(ibv_modify_srq(dummy_srq, &modify_attr, IBV_SRQ_LIMIT)) {
rc = OMPI_ERR_NOT_SUPPORTED;
goto destroy_dummy_srq;
}
destroy_dummy_srq:
if(ibv_destroy_srq(dummy_srq)) {
rc = OMPI_ERROR;
}
return rc;
}
/*
* create both the high and low priority completion queues
* and the shared receive queue (if requested)
*/
static int create_srq(mca_btl_openib_module_t *openib_btl)
{
int qp, rc = 0;
int32_t rd_num, rd_curr_num;
bool device_support_modify_srq = true;
/* Check if our device supports modify srq ability */
rc = check_if_device_support_modify_srq(openib_btl);
if(OMPI_ERR_NOT_SUPPORTED == rc) {
device_support_modify_srq = false;
} else if(OMPI_SUCCESS != rc) {
mca_btl_openib_show_init_error(__FILE__, __LINE__,
"ibv_create_srq",
ibv_get_device_name(openib_btl->device->ib_dev));
return rc;
}
/* create the SRQ's */
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
struct ibv_srq_init_attr attr;
memset(&attr, 0, sizeof(struct ibv_srq_init_attr));
if(!BTL_OPENIB_QP_TYPE_PP(qp)) {
attr.attr.max_wr = mca_btl_openib_component.qp_infos[qp].rd_num +
mca_btl_openib_component.qp_infos[qp].u.srq_qp.sd_max;
attr.attr.max_sge = 1;
openib_btl->qps[qp].u.srq_qp.rd_posted = 0;
#if HAVE_XRC
if(BTL_OPENIB_QP_TYPE_XRC(qp)) {
openib_btl->qps[qp].u.srq_qp.srq =
ibv_create_xrc_srq(openib_btl->device->ib_pd,
openib_btl->device->xrc_domain,
openib_btl->device->ib_cq[qp_cq_prio(qp)], &attr);
} else
#endif
{
openib_btl->qps[qp].u.srq_qp.srq =
ibv_create_srq(openib_btl->device->ib_pd, &attr);
}
if (NULL == openib_btl->qps[qp].u.srq_qp.srq) {
mca_btl_openib_show_init_error(__FILE__, __LINE__,
"ibv_create_srq",
ibv_get_device_name(openib_btl->device->ib_dev));
return OMPI_ERROR;
}
#if OPAL_HAVE_THREADS
{
opal_mutex_t *lock = &mca_btl_openib_component.srq_manager.lock;
opal_hash_table_t *srq_addr_table = &mca_btl_openib_component.srq_manager.srq_addr_table;
opal_mutex_lock(lock);
if (OPAL_SUCCESS != opal_hash_table_set_value_ptr(
srq_addr_table, &openib_btl->qps[qp].u.srq_qp.srq,
sizeof(struct ibv_srq*), (void*) openib_btl)) {
BTL_ERROR(("SRQ Internal error."
" Failed to add element to mca_btl_openib_component.srq_manager.srq_addr_table\n"));
opal_mutex_unlock(lock);
return OMPI_ERROR;
}
opal_mutex_unlock(lock);
}
#endif
rd_num = mca_btl_openib_component.qp_infos[qp].rd_num;
rd_curr_num = openib_btl->qps[qp].u.srq_qp.rd_curr_num = mca_btl_openib_component.qp_infos[qp].u.srq_qp.rd_init;
if(true == mca_btl_openib_component.enable_srq_resize &&
true == device_support_modify_srq) {
if(0 == rd_curr_num) {
openib_btl->qps[qp].u.srq_qp.rd_curr_num = 1;
}
openib_btl->qps[qp].u.srq_qp.rd_low_local = rd_curr_num - (rd_curr_num >> 2);
openib_btl->qps[qp].u.srq_qp.srq_limit_event_flag = true;
} else {
openib_btl->qps[qp].u.srq_qp.rd_curr_num = rd_num;
openib_btl->qps[qp].u.srq_qp.rd_low_local = mca_btl_openib_component.qp_infos[qp].rd_low;
/* Not used in this case, but we don't need a garbage */
mca_btl_openib_component.qp_infos[qp].u.srq_qp.srq_limit = 0;
openib_btl->qps[qp].u.srq_qp.srq_limit_event_flag = false;
}
}
}
return OMPI_SUCCESS;
}
static int mca_btl_openib_size_queues(struct mca_btl_openib_module_t* openib_btl, size_t nprocs)
{
uint32_t send_cqes, recv_cqes;
int rc = OMPI_SUCCESS, qp;
mca_btl_openib_device_t *device = openib_btl->device;
/* figure out reasonable sizes for completion queues */
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
if(BTL_OPENIB_QP_TYPE_SRQ(qp)) {
send_cqes = mca_btl_openib_component.qp_infos[qp].u.srq_qp.sd_max;
recv_cqes = mca_btl_openib_component.qp_infos[qp].rd_num;
} else {
send_cqes = (mca_btl_openib_component.qp_infos[qp].rd_num +
mca_btl_openib_component.qp_infos[qp].u.pp_qp.rd_rsv) * nprocs;
recv_cqes = send_cqes;
}
openib_btl->device->cq_size[qp_cq_prio(qp)] += recv_cqes;
openib_btl->device->cq_size[BTL_OPENIB_LP_CQ] += send_cqes;
}
rc = adjust_cq(device, BTL_OPENIB_HP_CQ);
if (OMPI_SUCCESS != rc) {
goto out;
}
rc = adjust_cq(device, BTL_OPENIB_LP_CQ);
if (OMPI_SUCCESS != rc) {
goto out;
}
if (0 == openib_btl->num_peers &&
(mca_btl_openib_component.num_srq_qps > 0 ||
mca_btl_openib_component.num_xrc_qps > 0)) {
rc = create_srq(openib_btl);
}
openib_btl->num_peers += nprocs;
out:
return rc;
}
mca_btl_openib_transport_type_t mca_btl_openib_get_transport_type(mca_btl_openib_module_t* openib_btl)
{
/* If we have a driver with RDMAoE supporting as the device struct contains the same type (IB) for
IBV_LINK_LAYER_INFINIBAND and IBV_LINK_LAYER_ETHERNET link layers and the single way
to detect this fact is to check their link_layer fields in a port_attr struct.
If our driver doesn't support this feature => the checking of transport type in device struct will be enough.
If the driver doesn't support completely transport types =>
our assumption that it is very old driver - that supports IB devices only */
#ifdef HAVE_STRUCT_IBV_DEVICE_TRANSPORT_TYPE
switch(openib_btl->device->ib_dev->transport_type) {
case IBV_TRANSPORT_IB:
#ifdef OMPI_HAVE_RDMAOE
switch(openib_btl->ib_port_attr.link_layer) {
case IBV_LINK_LAYER_ETHERNET:
return MCA_BTL_OPENIB_TRANSPORT_RDMAOE;
case IBV_LINK_LAYER_INFINIBAND:
return MCA_BTL_OPENIB_TRANSPORT_IB;
/* It is not possible that a device struct contains
IB transport and port was configured to IBV_LINK_LAYER_UNSPECIFIED */
case IBV_LINK_LAYER_UNSPECIFIED:
default:
return MCA_BTL_OPENIB_TRANSPORT_UNKNOWN;
}
#endif
return MCA_BTL_OPENIB_TRANSPORT_IB;
case IBV_TRANSPORT_IWARP:
return MCA_BTL_OPENIB_TRANSPORT_IWARP;
case IBV_TRANSPORT_UNKNOWN:
default:
return MCA_BTL_OPENIB_TRANSPORT_UNKNOWN;
}
#else
return MCA_BTL_OPENIB_TRANSPORT_IB;
#endif
}
static int mca_btl_openib_tune_endpoint(mca_btl_openib_module_t* openib_btl,
mca_btl_base_endpoint_t* endpoint)
{
int ret = OMPI_SUCCESS;
char* recv_qps = NULL;
ompi_btl_openib_ini_values_t values;
if(mca_btl_openib_get_transport_type(openib_btl) != endpoint->rem_info.rem_transport_type) {
orte_show_help("help-mpi-btl-openib.txt",
"conflicting transport types", true,
orte_process_info.nodename,
ibv_get_device_name(openib_btl->device->ib_dev),
(openib_btl->device->ib_dev_attr).vendor_id,
(openib_btl->device->ib_dev_attr).vendor_part_id,
mca_btl_openib_transport_name_strings[mca_btl_openib_get_transport_type(openib_btl)],
endpoint->endpoint_proc->proc_ompi->proc_hostname,
endpoint->rem_info.rem_vendor_id,
endpoint->rem_info.rem_vendor_part_id,
mca_btl_openib_transport_name_strings[endpoint->rem_info.rem_transport_type]);
return OMPI_ERROR;
}
memset(&values, 0, sizeof(ompi_btl_openib_ini_values_t));
ret = ompi_btl_openib_ini_query(endpoint->rem_info.rem_vendor_id,
endpoint->rem_info.rem_vendor_part_id, &values);
if (OMPI_SUCCESS != ret &&
OMPI_ERR_NOT_FOUND != ret) {
orte_show_help("help-mpi-btl-openib.txt",
"error in device init", true,
orte_process_info.nodename,
ibv_get_device_name(openib_btl->device->ib_dev));
return ret;
}
if(openib_btl->device->mtu < endpoint->rem_info.rem_mtu) {
endpoint->rem_info.rem_mtu = openib_btl->device->mtu;
}
endpoint->use_eager_rdma = openib_btl->device->use_eager_rdma &
endpoint->use_eager_rdma;
/* Receive queues checking */
/* In this check we assume that the command line or INI file parameters are the same
for all processes on all machines. The assumption is correct for 99.9999% of users,
if a user distributes different INI files or parameters for different node/procs,
it is on his own responsibility */
switch(mca_btl_openib_component.receive_queues_source) {
case BTL_OPENIB_RQ_SOURCE_MCA:
case BTL_OPENIB_RQ_SOURCE_MAX:
break;
/* If the queues configuration was set from command line
(with --mca btl_openib_receive_queues parameter) => both sides have a same configuration */
/* In this case the local queues configuration was gotten from INI file =>
not possible that remote side got its queues configuration from command line =>
(by prio) the configuration was set from INI file or (if not configure)
by default queues configuration */
case BTL_OPENIB_RQ_SOURCE_DEVICE_INI:
if(NULL != values.receive_queues) {
recv_qps = values.receive_queues;
} else {
recv_qps = mca_btl_openib_component.default_recv_qps;
}
if(0 != strcmp(mca_btl_openib_component.receive_queues,
recv_qps)) {
orte_show_help("help-mpi-btl-openib.txt",
"unsupported queues configuration", true,
orte_process_info.nodename,
ibv_get_device_name(openib_btl->device->ib_dev),
(openib_btl->device->ib_dev_attr).vendor_id,
(openib_btl->device->ib_dev_attr).vendor_part_id,
mca_btl_openib_component.receive_queues,
endpoint->endpoint_proc->proc_ompi->proc_hostname,
endpoint->rem_info.rem_vendor_id,
endpoint->rem_info.rem_vendor_part_id,
recv_qps);
return OMPI_ERROR;
}
break;
/* If the local queues configuration was set
by default queues => check all possible cases for remote side and compare */
case BTL_OPENIB_RQ_SOURCE_DEFAULT:
if(NULL != values.receive_queues) {
if(0 != strcmp(mca_btl_openib_component.receive_queues,
values.receive_queues)) {
orte_show_help("help-mpi-btl-openib.txt",
"unsupported queues configuration", true,
orte_process_info.nodename,
ibv_get_device_name(openib_btl->device->ib_dev),
(openib_btl->device->ib_dev_attr).vendor_id,
(openib_btl->device->ib_dev_attr).vendor_part_id,
mca_btl_openib_component.receive_queues,
endpoint->endpoint_proc->proc_ompi->proc_hostname,
endpoint->rem_info.rem_vendor_id,
endpoint->rem_info.rem_vendor_part_id,
values.receive_queues);
return OMPI_ERROR;
}
}
break;
}
return OMPI_SUCCESS;
}
/* read a single integer from a linux module parameters file */
static uint64_t read_module_param(char *file, uint64_t value)
{
int fd = open(file, O_RDONLY);
char buffer[64];
uint64_t ret;
if (0 > fd) {
return value;
}
read (fd, buffer, 64);
close (fd);
errno = 0;
ret = strtoull(buffer, NULL, 10);
return (0 == errno) ? ret : value;
}
/* calculate memory registation limits */
static uint64_t calculate_total_mem (void)
{
#if OPAL_HAVE_HWLOC
hwloc_obj_t machine;
machine = hwloc_get_next_obj_by_type (opal_hwloc_topology, HWLOC_OBJ_MACHINE, NULL);
if (NULL == machine) {
return 0;
}
return machine->memory.total_memory;
#else
return 0;
#endif
}
static uint64_t calculate_max_reg (void)
{
struct stat statinfo;
uint64_t mtts_per_seg = 1;
uint64_t num_mtt = 1 << 19;
uint64_t reserved_mtt = 0;
uint64_t max_reg, mem_total;
mem_total = calculate_total_mem ();
if (0 == stat("/sys/module/mlx4_core/parameters", &statinfo)) {
mtts_per_seg = 1 << read_module_param("/sys/module/mlx4_core/parameters/log_mtts_per_seg", 1);
num_mtt = 1 << read_module_param("/sys/module/mlx4_core/parameters/log_num_mtt", 20);
if (1 == num_mtt) {
/* NTH: is 19 a minimum? when log_num_mtt is set to 0 use 19 */
num_mtt = 1 << 20;
}
max_reg = (num_mtt - reserved_mtt) * getpagesize () * mtts_per_seg;
} else if (0 == stat("/sys/module/ib_mthca/parameters", &statinfo)) {
mtts_per_seg = 1 << read_module_param("/sys/module/ib_mthca/parameters/log_mtts_per_seg", 1);
num_mtt = read_module_param("/sys/module/ib_mthca/parameters/num_mtt", 1 << 20);
reserved_mtt = read_module_param("/sys/module/ib_mthca/parameters/fmr_reserved_mtts", 0);
max_reg = (num_mtt - reserved_mtt) * getpagesize () * mtts_per_seg;
} else {
/* need to update to determine the registration limit for this configuration */
max_reg = mem_total;
}
/* NTH: print a warning if we can't register more than 75% of physical memory */
if (max_reg < mem_total * 3 / 4) {
orte_show_help("help-mpi-btl-openib.txt", "reg mem limit low", true,
orte_process_info.nodename, (unsigned long)(max_reg >> 20),
(unsigned long)(mem_total >> 20));
}
/* limit us to 87.5% of the registered memory (some fluff for QPs, file systems, etc) */
return (max_reg * 7) >> 3;
}
/*
* add a proc to this btl module
* creates an endpoint that is setup on the
* first send to the endpoint
*/
int mca_btl_openib_add_procs(
struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **ompi_procs,
struct mca_btl_base_endpoint_t** peers,
opal_bitmap_t* reachable)
{
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*)btl;
int i,j, rc, local_procs;
int rem_subnet_id_port_cnt;
int lcl_subnet_id_port_cnt = 0;
int btl_rank = 0;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
mca_btl_base_endpoint_t* endpoint;
ompi_btl_openib_connect_base_module_t *local_cpc;
ompi_btl_openib_connect_base_module_data_t *remote_cpc_data;
for(j=0; j < mca_btl_openib_component.ib_num_btls; j++){
if(mca_btl_openib_component.openib_btls[j]->port_info.subnet_id
== openib_btl->port_info.subnet_id) {
if(openib_btl == mca_btl_openib_component.openib_btls[j]) {
btl_rank = lcl_subnet_id_port_cnt;
}
lcl_subnet_id_port_cnt++;
}
}
#if HAVE_XRC
if(MCA_BTL_XRC_ENABLED &&
NULL == mca_btl_openib_component.ib_addr_table.ht_table) {
if(OPAL_SUCCESS != opal_hash_table_init(
&mca_btl_openib_component.ib_addr_table, nprocs)) {
BTL_ERROR(("XRC internal error. Failed to allocate ib_table"));
return OMPI_ERROR;
}
}
#endif
for (i = 0, local_procs = 0 ; i < (int) nprocs; i++) {
struct ompi_proc_t* ompi_proc = ompi_procs[i];
mca_btl_openib_proc_t* ib_proc;
int remote_matching_port;
opal_output(-1, "add procs: adding proc %d", i);
if (OPAL_PROC_ON_LOCAL_NODE(ompi_proc->proc_flags)) {
local_procs ++;
}
/* OOB, XOOB, and RDMACM do not support SELF comunication, so
* mark the prco as unreachable by openib btl */
if (OPAL_EQUAL == orte_util_compare_name_fields
(ORTE_NS_CMP_ALL, ORTE_PROC_MY_NAME, &ompi_proc->proc_name)) {
continue;
}
#if defined(HAVE_STRUCT_IBV_DEVICE_TRANSPORT_TYPE)
/* Most current iWARP adapters (June 2008) cannot handle
talking to other processes on the same host (!) -- so mark
them as unreachable (need to use sm). So for the moment,
we'll just mark any local peer on an iWARP NIC as
unreachable. See trac ticket #1352. */
if (IBV_TRANSPORT_IWARP == openib_btl->device->ib_dev->transport_type &&
OPAL_PROC_ON_LOCAL_NODE(ompi_proc->proc_flags)) {
continue;
}
#endif
if(NULL == (ib_proc = mca_btl_openib_proc_create(ompi_proc))) {
return OMPI_ERR_OUT_OF_RESOURCE;
}
/* check if the remote proc has any ports that:
- on the same subnet as the local proc, and
- on that subnet, has a CPC in common with the local proc
*/
remote_matching_port = -1;
rem_subnet_id_port_cnt = 0;
BTL_VERBOSE(("got %d port_infos ", ib_proc->proc_port_count));
for (j = 0; j < (int) ib_proc->proc_port_count; j++){
BTL_VERBOSE(("got a subnet %016" PRIx64,
ib_proc->proc_ports[j].pm_port_info.subnet_id));
if (ib_proc->proc_ports[j].pm_port_info.subnet_id ==
openib_btl->port_info.subnet_id) {
BTL_VERBOSE(("Got a matching subnet!"));
if (rem_subnet_id_port_cnt == btl_rank) {
remote_matching_port = j;
}
rem_subnet_id_port_cnt++;
}
}
if (0 == rem_subnet_id_port_cnt) {
/* no use trying to communicate with this endpoint */
BTL_VERBOSE(("No matching subnet id/CPC was found, moving on.. "));
continue;
}
/* If this process has multiple ports on a single subnet ID,
and the report proc also has multiple ports on this same
subnet ID, the default connection pattern is:
LOCAL REMOTE PEER
1st port on subnet X <--> 1st port on subnet X
2nd port on subnet X <--> 2nd port on subnet X
3nd port on subnet X <--> 3nd port on subnet X
...etc.
Note that the port numbers may not be contiguous, and they
may not be the same on either side. Hence the "1st", "2nd",
"3rd, etc. notation, above.
Hence, if the local "rank" of this module's port on the
subnet ID is greater than the total number of ports on the
peer on this same subnet, then we have no match. So skip
this connection. */
if (rem_subnet_id_port_cnt < lcl_subnet_id_port_cnt &&
btl_rank >= rem_subnet_id_port_cnt) {
BTL_VERBOSE(("Not enough remote ports on this subnet id, moving on.. "));
continue;
}
/* Now that we have verified that we're on the same subnet and
the remote peer has enough ports, see if that specific port
on the peer has a matching CPC. */
assert(btl_rank <= ib_proc->proc_port_count);
assert(remote_matching_port != -1);
if (OMPI_SUCCESS !=
ompi_btl_openib_connect_base_find_match(openib_btl,
&(ib_proc->proc_ports[remote_matching_port]),
&local_cpc,
&remote_cpc_data)) {
continue;
}
OPAL_THREAD_LOCK(&ib_proc->proc_lock);
/* The btl_proc datastructure is shared by all IB BTL
* instances that are trying to reach this destination.
* Cache the peer instance on the btl_proc.
*/
endpoint = OBJ_NEW(mca_btl_openib_endpoint_t);
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
assert(((opal_object_t*)endpoint)->obj_reference_count == 1);
if(NULL == endpoint) {
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
return OMPI_ERR_OUT_OF_RESOURCE;
}
#if HAVE_XRC
if (MCA_BTL_XRC_ENABLED) {
int rem_port_cnt = 0;
for(j = 0; j < (int) ib_proc->proc_port_count; j++) {
if(ib_proc->proc_ports[j].pm_port_info.subnet_id ==
openib_btl->port_info.subnet_id) {
if (rem_port_cnt == btl_rank)
break;
else
rem_port_cnt ++;
}
}
assert(rem_port_cnt == btl_rank);
/* Push the subnet/lid/jobid to xrc hash */
rc = mca_btl_openib_ib_address_add_new(
ib_proc->proc_ports[j].pm_port_info.lid,
ib_proc->proc_ports[j].pm_port_info.subnet_id,
ompi_proc->proc_name.jobid, endpoint);
if (OMPI_SUCCESS != rc ) {
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
return OMPI_ERROR;
}
}
#endif
mca_btl_openib_endpoint_init(openib_btl, endpoint,
local_cpc,
&(ib_proc->proc_ports[remote_matching_port]),
remote_cpc_data);
rc = mca_btl_openib_proc_insert(ib_proc, endpoint);
if (OMPI_SUCCESS != rc) {
OBJ_RELEASE(endpoint);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
continue;
}
if(OMPI_SUCCESS != mca_btl_openib_tune_endpoint(openib_btl, endpoint)) {
OBJ_RELEASE(endpoint);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
return OMPI_ERROR;
}
endpoint->index = opal_pointer_array_add(openib_btl->device->endpoints, (void*)endpoint);
if( 0 > endpoint->index ) {
OBJ_RELEASE(endpoint);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
continue;
}
/* Tell the selected CPC that it won. NOTE: This call is
outside of / separate from mca_btl_openib_endpoint_init()
because this function likely needs the endpoint->index. */
if (NULL != local_cpc->cbm_endpoint_init) {
rc = local_cpc->cbm_endpoint_init(endpoint);
if (OMPI_SUCCESS != rc) {
OBJ_RELEASE(endpoint);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
continue;
}
}
opal_bitmap_set_bit(reachable, i);
OPAL_THREAD_UNLOCK(&ib_proc->proc_lock);
peers[i] = endpoint;
}
openib_btl->local_procs += local_procs;
openib_btl->device->mem_reg_max = calculate_max_reg () / openib_btl->local_procs;
return mca_btl_openib_size_queues(openib_btl, nprocs);
}
/*
* delete the proc as reachable from this btl module
*/
int mca_btl_openib_del_procs(struct mca_btl_base_module_t* btl,
size_t nprocs,
struct ompi_proc_t **procs,
struct mca_btl_base_endpoint_t ** peers)
{
int i,ep_index;
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
mca_btl_openib_endpoint_t* endpoint;
for (i=0 ; i < (int) nprocs ; i++) {
mca_btl_base_endpoint_t* del_endpoint = peers[i];
for(ep_index=0;
ep_index < opal_pointer_array_get_size(openib_btl->device->endpoints);
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
ep_index++) {
endpoint = (mca_btl_openib_endpoint_t *)
opal_pointer_array_get_item(openib_btl->device->endpoints,
ep_index);
if(!endpoint || endpoint->endpoint_btl != openib_btl) {
continue;
}
if (endpoint == del_endpoint) {
BTL_VERBOSE(("in del_procs %d, setting another endpoint to null",
ep_index));
opal_pointer_array_set_item(openib_btl->device->endpoints,
ep_index, NULL);
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
assert(((opal_object_t*)endpoint)->obj_reference_count == 1);
mca_btl_openib_proc_remove(procs[i], endpoint);
OBJ_RELEASE(endpoint);
}
}
}
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
return OMPI_SUCCESS;
}
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
/*
*Register callback function for error handling..
*/
int mca_btl_openib_register_error_cb(
struct mca_btl_base_module_t* btl,
mca_btl_base_module_error_cb_fn_t cbfunc)
{
mca_btl_openib_module_t* openib_btl = (mca_btl_openib_module_t*) btl;
openib_btl->error_cb = cbfunc; /* stash for later */
return OMPI_SUCCESS;
}
static inline mca_btl_base_descriptor_t *
ib_frag_alloc(mca_btl_openib_module_t *btl, size_t size, uint8_t order,
uint32_t flags)
{
int qp, rc;
ompi_free_list_item_t* item = NULL;
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
if(mca_btl_openib_component.qp_infos[qp].size >= size) {
OMPI_FREE_LIST_GET(&btl->device->qps[qp].send_free, item, rc);
if(item)
break;
}
}
if(NULL == item)
return NULL;
/* not all upper layer users set this */
to_base_frag(item)->segment.base.seg_len = size;
to_base_frag(item)->base.order = order;
to_base_frag(item)->base.des_flags = flags;
assert(to_send_frag(item)->qp_idx <= order);
return &to_base_frag(item)->base;
}
/* check if pending fragment has enough space for coalescing */
static mca_btl_openib_send_frag_t *check_coalescing(opal_list_t *frag_list,
opal_mutex_t *lock, mca_btl_base_endpoint_t *ep, size_t size)
{
mca_btl_openib_send_frag_t *frag = NULL;
if(opal_list_is_empty(frag_list))
return NULL;
OPAL_THREAD_LOCK(lock);
if(!opal_list_is_empty(frag_list)) {
int qp;
size_t total_length;
opal_list_item_t *i = opal_list_get_first(frag_list);
frag = to_send_frag(i);
if(to_com_frag(frag)->endpoint != ep ||
MCA_BTL_OPENIB_FRAG_CONTROL == openib_frag_type(frag)) {
OPAL_THREAD_UNLOCK(lock);
return NULL;
}
total_length = size + frag->coalesced_length +
to_base_frag(frag)->segment.base.seg_len +
sizeof(mca_btl_openib_header_coalesced_t);
qp = to_base_frag(frag)->base.order;
if(total_length <= mca_btl_openib_component.qp_infos[qp].size)
opal_list_remove_first(frag_list);
else
frag = NULL;
}
OPAL_THREAD_UNLOCK(lock);
return frag;
}
/**
* Allocate a segment.
*
* @param btl (IN) BTL module
* @param size (IN) Request segment size.
* @param size (IN) Size of segment to allocate
*
* When allocating a segment we pull a pre-alllocated segment
* from one of two free lists, an eager list and a max list
*/
mca_btl_base_descriptor_t* mca_btl_openib_alloc(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* ep,
uint8_t order,
size_t size,
uint32_t flags)
{
mca_btl_openib_module_t *obtl = (mca_btl_openib_module_t*)btl;
int qp = frag_size_to_order(obtl, size);
mca_btl_openib_send_frag_t *sfrag = NULL;
mca_btl_openib_coalesced_frag_t *cfrag;
assert(qp != MCA_BTL_NO_ORDER);
if(mca_btl_openib_component.use_message_coalescing &&
(flags & MCA_BTL_DES_FLAGS_BTL_OWNERSHIP)) {
int prio = !(flags & MCA_BTL_DES_FLAGS_PRIORITY);
sfrag = check_coalescing(&ep->qps[qp].no_wqe_pending_frags[prio],
&ep->endpoint_lock, ep, size);
if(NULL == sfrag) {
if(BTL_OPENIB_QP_TYPE_PP(qp)) {
sfrag = check_coalescing(&ep->qps[qp].no_credits_pending_frags[prio],
&ep->endpoint_lock, ep, size);
} else {
sfrag = check_coalescing(
&obtl->qps[qp].u.srq_qp.pending_frags[prio],
&obtl->ib_lock, ep, size);
}
}
}
if(NULL == sfrag)
return ib_frag_alloc((mca_btl_openib_module_t*)btl, size, order, flags);
/* begin coalescing message */
cfrag = alloc_coalesced_frag();
cfrag->send_frag = sfrag;
/* fix up new coalescing header if this is the first coalesced frag */
if(sfrag->hdr != sfrag->chdr) {
mca_btl_openib_control_header_t *ctrl_hdr;
mca_btl_openib_header_coalesced_t *clsc_hdr;
uint8_t org_tag;
org_tag = sfrag->hdr->tag;
sfrag->hdr = sfrag->chdr;
ctrl_hdr = (mca_btl_openib_control_header_t*)(sfrag->hdr + 1);
clsc_hdr = (mca_btl_openib_header_coalesced_t*)(ctrl_hdr + 1);
sfrag->hdr->tag = MCA_BTL_TAG_BTL;
ctrl_hdr->type = MCA_BTL_OPENIB_CONTROL_COALESCED;
clsc_hdr->tag = org_tag;
clsc_hdr->size = to_base_frag(sfrag)->segment.base.seg_len;
clsc_hdr->alloc_size = to_base_frag(sfrag)->segment.base.seg_len;
if(ep->nbo)
BTL_OPENIB_HEADER_COALESCED_HTON(*clsc_hdr);
sfrag->coalesced_length = sizeof(mca_btl_openib_control_header_t) +
sizeof(mca_btl_openib_header_coalesced_t);
to_com_frag(sfrag)->sg_entry.addr = (uint64_t)(uintptr_t)sfrag->hdr;
}
cfrag->hdr = (mca_btl_openib_header_coalesced_t*)((unsigned char*)(sfrag->hdr + 1) +
sfrag->coalesced_length +
to_base_frag(sfrag)->segment.base.seg_len);
cfrag->hdr = (mca_btl_openib_header_coalesced_t*)BTL_OPENIB_ALIGN_COALESCE_HDR(cfrag->hdr);
cfrag->hdr->alloc_size = size;
/* point coalesced frag pointer into a data buffer */
to_base_frag(cfrag)->segment.base.seg_addr.pval = cfrag->hdr + 1;
to_base_frag(cfrag)->segment.base.seg_len = size;
/* save coalesced fragment on a main fragment; we will need it after send
* completion to free it and to call upper layer callback */
opal_list_append(&sfrag->coalesced_frags, (opal_list_item_t*)cfrag);
sfrag->coalesced_length += (size+sizeof(mca_btl_openib_header_coalesced_t));
to_base_frag(cfrag)->base.des_flags = flags;
return &to_base_frag(cfrag)->base;
}
/**
* Return a segment
*
* Return the segment to the appropriate
* preallocated segment list
*/
int mca_btl_openib_free(
struct mca_btl_base_module_t* btl,
mca_btl_base_descriptor_t* des)
{
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
/* is this fragment pointing at user memory? */
if(MCA_BTL_OPENIB_FRAG_SEND_USER == openib_frag_type(des) ||
MCA_BTL_OPENIB_FRAG_RECV_USER == openib_frag_type(des)) {
mca_btl_openib_com_frag_t* frag = to_com_frag(des);
if(frag->registration != NULL) {
btl->btl_mpool->mpool_deregister(btl->btl_mpool,
(mca_mpool_base_registration_t*)frag->registration);
frag->registration = NULL;
}
}
/* reset those field on free so we will not have to do it on alloc */
to_base_frag(des)->base.des_flags = 0;
switch(openib_frag_type(des)) {
case MCA_BTL_OPENIB_FRAG_RECV:
case MCA_BTL_OPENIB_FRAG_RECV_USER:
to_base_frag(des)->base.des_src = NULL;
to_base_frag(des)->base.des_src_cnt = 0;
break;
case MCA_BTL_OPENIB_FRAG_SEND:
to_send_frag(des)->hdr = (mca_btl_openib_header_t*)
(((unsigned char*)to_send_frag(des)->chdr) +
sizeof(mca_btl_openib_header_coalesced_t) +
sizeof(mca_btl_openib_control_header_t));
to_com_frag(des)->sg_entry.addr =
(uint64_t)(uintptr_t)to_send_frag(des)->hdr;
to_send_frag(des)->coalesced_length = 0;
to_base_frag(des)->segment.base.seg_addr.pval =
to_send_frag(des)->hdr + 1;
assert(!opal_list_get_size(&to_send_frag(des)->coalesced_frags));
/* fall throug */
case MCA_BTL_OPENIB_FRAG_SEND_USER:
to_base_frag(des)->base.des_dst = NULL;
to_base_frag(des)->base.des_dst_cnt = 0;
break;
default:
break;
}
MCA_BTL_IB_FRAG_RETURN(des);
return OMPI_SUCCESS;
}
/**
* register user buffer or pack
* data into pre-registered buffer and return a
* descriptor that can be
* used for send/put.
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
*
* prepare source's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registered user-buffer, if the memory registration
* is too small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registrations is full, this prevents resources from being exhausted.
* Is the requested size larger than the btl's max send size?
* if so and we aren't asked to leave the registration pinned, then we register the memory if
* the users buffer is contiguous
* Otherwise we choose from two free lists of pre-registered memory in which to pack the data into.
*
*/
mca_btl_base_descriptor_t* mca_btl_openib_prepare_src(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_openib_module_t *openib_btl;
mca_btl_openib_reg_t *openib_reg;
mca_btl_openib_com_frag_t *frag = NULL;
struct iovec iov;
uint32_t iov_count = 1;
size_t max_data = *size;
void *ptr;
int rc;
openib_btl = (mca_btl_openib_module_t*)btl;
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
if(opal_convertor_need_buffers(convertor) == false && 0 == reserve) {
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
/* GMS bloody HACK! */
if(registration != NULL || max_data > btl->btl_max_send_size) {
frag = alloc_send_user_frag();
if(NULL == frag) {
return NULL;
}
iov.iov_len = max_data;
iov.iov_base = NULL;
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
opal_convertor_pack(convertor, &iov, &iov_count, &max_data);
*size = max_data;
if(NULL == registration) {
rc = btl->btl_mpool->mpool_register(btl->btl_mpool,
iov.iov_base, max_data, 0, &registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_IB_FRAG_RETURN(frag);
return NULL;
}
/* keep track of the registration we did */
to_com_frag(frag)->registration =
(mca_btl_openib_reg_t*)registration;
}
openib_reg = (mca_btl_openib_reg_t*)registration;
frag->sg_entry.length = max_data;
frag->sg_entry.lkey = openib_reg->mr->lkey;
frag->sg_entry.addr = (uint64_t)(uintptr_t)iov.iov_base;
to_base_frag(frag)->base.order = order;
to_base_frag(frag)->base.des_flags = flags;
to_base_frag(frag)->segment.base.seg_len = max_data;
to_base_frag(frag)->segment.base.seg_addr.lval = (uint64_t)(uintptr_t) iov.iov_base;
to_base_frag(frag)->segment.key = frag->sg_entry.lkey;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
assert(MCA_BTL_NO_ORDER == order);
BTL_VERBOSE(("frag->sg_entry.lkey = %" PRIu32 " .addr = %" PRIx64,
frag->sg_entry.lkey, frag->sg_entry.addr));
return &to_base_frag(frag)->base;
}
}
assert(MCA_BTL_NO_ORDER == order);
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
if(max_data + reserve > btl->btl_max_send_size) {
max_data = btl->btl_max_send_size - reserve;
}
if (OPAL_UNLIKELY(0 == reserve)) {
frag = (mca_btl_openib_com_frag_t *) ib_frag_alloc(openib_btl, max_data, order, flags);
if(NULL == frag)
return NULL;
/* NTH: this frag will be ue used for either a get or put so we need to set the lval to be
consistent with the usage in get and put. the pval will be restored in mca_btl_openib_free */
ptr = to_base_frag(frag)->segment.base.seg_addr.pval;
to_base_frag(frag)->segment.base.seg_addr.lval =
(uint64_t)(uintptr_t) ptr;
} else {
frag =
(mca_btl_openib_com_frag_t *) mca_btl_openib_alloc(btl, endpoint, order,
max_data + reserve, flags);
if(NULL == frag)
return NULL;
ptr = to_base_frag(frag)->segment.base.seg_addr.pval;
}
iov.iov_len = max_data;
iov.iov_base = (IOVBASE_TYPE *) ( (unsigned char*) ptr + reserve );
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
rc = opal_convertor_pack(convertor, &iov, &iov_count, &max_data);
*size = max_data;
/* not all upper layer users set this */
to_base_frag(frag)->segment.base.seg_len = max_data + reserve;
return &to_base_frag(frag)->base;
}
/**
* Prepare the dst buffer
*
* @param btl (IN) BTL module
* @param peer (IN) BTL peer addressing
* prepare dest's behavior depends on the following:
* Has a valid memory registration been passed to prepare_src?
* if so we attempt to use the pre-registered user-buffer, if the memory registration
* is to small (only a portion of the user buffer) then we must reregister the user buffer
* Has the user requested the memory to be left pinned?
* if so we insert the memory registration into a memory tree for later lookup, we
* may also remove a previous registration if a MRU (most recently used) list of
* registrations is full, this prevents resources from being exhausted.
*/
mca_btl_base_descriptor_t* mca_btl_openib_prepare_dst(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* endpoint,
mca_mpool_base_registration_t* registration,
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
struct opal_convertor_t* convertor,
uint8_t order,
size_t reserve,
size_t* size,
uint32_t flags)
{
mca_btl_openib_module_t *openib_btl;
mca_btl_openib_component_t *openib_component;
mca_btl_openib_com_frag_t *frag;
mca_btl_openib_reg_t *openib_reg;
uint32_t max_msg_sz;
int rc;
void *buffer;
openib_btl = (mca_btl_openib_module_t*)btl;
openib_component = (mca_btl_openib_component_t*)btl->btl_component;
frag = alloc_recv_user_frag();
if(NULL == frag) {
return NULL;
}
/* max_msg_sz is the maximum message size of the HCA (hw limitation)
set the minimum between local max_msg_sz and the remote */
max_msg_sz = MIN(openib_btl->ib_port_attr.max_msg_sz,
endpoint->endpoint_btl->ib_port_attr.max_msg_sz);
/* check if user has explicitly limited the max message size */
if (openib_component->max_hw_msg_size > 0 &&
max_msg_sz > (size_t)openib_component->max_hw_msg_size) {
max_msg_sz = openib_component->max_hw_msg_size;
}
/* limit the message so to max_msg_sz */
if (*size > (size_t)max_msg_sz) {
*size = (size_t)max_msg_sz;
BTL_VERBOSE(("message size limited to %" PRIsize_t "\n", *size));
}
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
opal_convertor_get_current_pointer(convertor, &buffer);
if(NULL == registration){
/* we didn't get a memory registration passed in, so we have to
* register the region ourselves
*/
rc = btl->btl_mpool->mpool_register(btl->btl_mpool, buffer, *size, 0,
&registration);
if(OMPI_SUCCESS != rc || NULL == registration) {
MCA_BTL_IB_FRAG_RETURN(frag);
return NULL;
}
/* keep track of the registration we did */
frag->registration = (mca_btl_openib_reg_t*)registration;
}
openib_reg = (mca_btl_openib_reg_t*)registration;
frag->sg_entry.length = *size;
frag->sg_entry.lkey = openib_reg->mr->lkey;
frag->sg_entry.addr = (uint64_t)(uintptr_t)buffer;
to_base_frag(frag)->segment.base.seg_addr.lval = (uint64_t)(uintptr_t) buffer;
to_base_frag(frag)->segment.base.seg_len = *size;
to_base_frag(frag)->segment.key = openib_reg->mr->rkey;
to_base_frag(frag)->base.order = order;
to_base_frag(frag)->base.des_flags = flags;
BTL_VERBOSE(("frag->sg_entry.lkey = %" PRIu32 " .addr = %" PRIx64 " "
"rkey = %" PRIu32, frag->sg_entry.lkey, frag->sg_entry.addr,
openib_reg->mr->rkey));
return &to_base_frag(frag)->base;
}
static int mca_btl_openib_finalize_resources(struct mca_btl_base_module_t* btl) {
mca_btl_openib_module_t* openib_btl;
mca_btl_openib_endpoint_t* endpoint;
int ep_index, i;
int qp, rc = OMPI_SUCCESS;
openib_btl = (mca_btl_openib_module_t*) btl;
/* Sanity check */
if( mca_btl_openib_component.ib_num_btls <= 0 ) {
return OMPI_SUCCESS;
}
/* Release all QPs */
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 04:46:02 +04:00
for (ep_index=0;
ep_index < opal_pointer_array_get_size(openib_btl->device->endpoints);
ep_index++) {
endpoint=(mca_btl_openib_endpoint_t *)opal_pointer_array_get_item(openib_btl->device->endpoints,
ep_index);
if(!endpoint) {
BTL_VERBOSE(("In finalize, got another null endpoint"));
continue;
}
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 04:46:02 +04:00
if(endpoint->endpoint_btl != openib_btl) {
continue;
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 04:46:02 +04:00
}
for(i = 0; i < openib_btl->device->eager_rdma_buffers_count; i++) {
if(openib_btl->device->eager_rdma_buffers[i] == endpoint) {
openib_btl->device->eager_rdma_buffers[i] = NULL;
OBJ_RELEASE(endpoint);
}
}
OBJ_RELEASE(endpoint);
}
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
/* Release SRQ resources */
for(qp = 0; qp < mca_btl_openib_component.num_qps; qp++) {
if(!BTL_OPENIB_QP_TYPE_PP(qp)) {
MCA_BTL_OPENIB_CLEAN_PENDING_FRAGS(
&openib_btl->qps[qp].u.srq_qp.pending_frags[0]);
MCA_BTL_OPENIB_CLEAN_PENDING_FRAGS(
&openib_btl->qps[qp].u.srq_qp.pending_frags[1]);
if (NULL != openib_btl->qps[qp].u.srq_qp.srq) {
#if OPAL_HAVE_THREADS
opal_mutex_t *lock =
&mca_btl_openib_component.srq_manager.lock;
opal_hash_table_t *srq_addr_table =
&mca_btl_openib_component.srq_manager.srq_addr_table;
opal_mutex_lock(lock);
if (OPAL_SUCCESS !=
opal_hash_table_remove_value_ptr(srq_addr_table,
&openib_btl->qps[qp].u.srq_qp.srq,
sizeof(struct ibv_srq *))) {
BTL_VERBOSE(("Failed to remove SRQ %d entry from hash table.", qp));
rc = OMPI_ERROR;
}
opal_mutex_unlock(lock);
#endif
if (0 != ibv_destroy_srq(openib_btl->qps[qp].u.srq_qp.srq)) {
BTL_VERBOSE(("Failed to close SRQ %d", qp));
rc = OMPI_ERROR;
}
}
OBJ_DESTRUCT(&openib_btl->qps[qp].u.srq_qp.pending_frags[0]);
OBJ_DESTRUCT(&openib_btl->qps[qp].u.srq_qp.pending_frags[1]);
}
}
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 04:46:02 +04:00
/* Finalize the CPC modules on this openib module */
for (i = 0; i < openib_btl->num_cpcs; ++i) {
if (NULL != openib_btl->cpcs[i]->cbm_finalize) {
openib_btl->cpcs[i]->cbm_finalize(openib_btl, openib_btl->cpcs[i]);
}
free(openib_btl->cpcs[i]);
}
free(openib_btl->cpcs);
/* Release device if there are no more users */
if(!(--openib_btl->device->btls)) {
OBJ_RELEASE(openib_btl->device);
}
if (NULL != openib_btl->qps) {
free(openib_btl->qps);
}
return rc;
}
int mca_btl_openib_finalize(struct mca_btl_base_module_t* btl)
{
mca_btl_openib_module_t* openib_btl;
int i, rc = OMPI_SUCCESS;
openib_btl = (mca_btl_openib_module_t*) btl;
/* Sanity check */
if( mca_btl_openib_component.ib_num_btls <= 0 ) {
return 0;
}
if( OMPI_SUCCESS != (rc = mca_btl_openib_finalize_resources(btl) ) ) {
BTL_VERBOSE(("Failed to finalize resources"));
}
Fixes trac:1210, #1319 Commit from a long-standing Mercurial tree that ended up incorporating a lot of things: * A few fixes for CPC interface changes in all the CPCs * Attempts (but not yet finished) to fix shutdown problems in the IB CM CPC * #1319: add CTS support (i.e., initiator guarantees to send first message; automatically activated for iWARP over the RDMA CM CPC) * Some variable and function renamings to make this be generic (e.g., alloc_credit_frag became alloc_control_frag) * CPCs no longer post receive buffers; they only post a single receive buffer for the CTS if they use CTS. Instead, the main BTL now posts the main sets of receive buffers. * CPCs allocate a CTS buffer only if they're about to make a connection * RDMA CM improvements: * Use threaded mode openib fd monitoring to wait for for RDMA CM events * Synchronize endpoint finalization and disconnection between main thread and service thread to avoid/fix some race conditions * Converted several structs to be OBJs so that we can use reference counting to know when to invoke destructors * Make some new OBJ's have opal_list_item_t's as their base, thereby eliminating the need for the local list_item_t type * Renamed many variables to be internally consistent * Centralize the decision in an inline function as to whether this process or the remote process is supposed to be the initiator * Add oodles of OPAL_OUTPUT statements for debugging (hard-wired to output stream -1; to be activated by developers if they want/need them) * Use rdma_create_qp() instead of ibv_create_qp() * openib fd monitoring improvements: * Renamed a bunch of functions and variables to be a little more obvious as to their true function * Use pipes to communicate between main thread and service thread * Add ability for main thread to invoke a function back on the service thread * Ensure to set initiator_depth and responder_resources properly, but putting max_qp_rd_ataom and ma_qp_init_rd_atom in the modex (see rdma_connect(3)) * Ensure to set the source IP address in rdma_resolve() to ensure that we select the correct OpenFabrics source port * Make new MCA param: openib_btl_connect_rdmacm_resolve_timeout * Other improvements: * btl_openib_device_type MCA param: can be "iw" or "ib" or "all" (or "infiniband" or "iwarp") * Somewhat improved error handling * Bunches of spelling fixes in comments, VERBOSE, and OUTPUT statements * Oodles of little coding style fixes * Changed shutdown ordering of btl; the device is now an OBJ with ref counting for destruction * Added some more show_help error messages * Change configury to only build IBCM / RDMACM if we have threads (because we need a progress thread) This commit was SVN r19686. The following Trac tickets were found above: Ticket 1210 --> https://svn.open-mpi.org/trac/ompi/ticket/1210
2008-10-06 04:46:02 +04:00
/* Remove the btl from component list */
if ( mca_btl_openib_component.ib_num_btls > 1 ) {
for(i = 0; i < mca_btl_openib_component.ib_num_btls; i++){
if (mca_btl_openib_component.openib_btls[i] == openib_btl){
mca_btl_openib_component.openib_btls[i] =
mca_btl_openib_component.openib_btls[mca_btl_openib_component.ib_num_btls-1];
break;
}
}
}
mca_btl_openib_component.ib_num_btls--;
OBJ_DESTRUCT(&openib_btl->ib_lock);
free(openib_btl);
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
BTL_VERBOSE(("Success in closing BTL resources"));
return rc;
}
/*
* Send immediate - Minimum function calls minimum checks, send the data ASAP.
* If BTL can't to send the messages imidiate, it creates messages descriptor
* returns it to PML.
*/
int mca_btl_openib_sendi( struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* ep,
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
struct opal_convertor_t* convertor,
void* header,
size_t header_size,
size_t payload_size,
uint8_t order,
uint32_t flags,
mca_btl_base_tag_t tag,
mca_btl_base_descriptor_t** descriptor)
{
mca_btl_openib_module_t *obtl = (mca_btl_openib_module_t*)btl;
size_t size = payload_size + header_size;
size_t eager_limit;
int rc,
qp = frag_size_to_order(obtl, size),
prio = !(flags & MCA_BTL_DES_FLAGS_PRIORITY),
ib_rc;
int32_t cm_return;
bool do_rdma = false;
ompi_free_list_item_t* item = NULL;
mca_btl_openib_frag_t *frag;
mca_btl_openib_header_t *hdr;
OPAL_THREAD_LOCK(&ep->endpoint_lock);
if (OPAL_UNLIKELY(MCA_BTL_IB_CONNECTED != ep->endpoint_state)) {
goto cant_send;
}
/* If it is pending messages on the qp - we can not send */
if(OPAL_UNLIKELY(!opal_list_is_empty(&ep->qps[qp].no_wqe_pending_frags[prio]))) {
goto cant_send;
}
/* Allocate WQE */
if(OPAL_UNLIKELY(qp_get_wqe(ep, qp) < 0)) {
goto no_credits_or_wqe;
}
/* eager rdma or send ? Check eager rdma credits */
/* Note: Maybe we want to implement isend only for eager rdma ?*/
eager_limit = mca_btl_openib_component.eager_limit +
sizeof(mca_btl_openib_header_coalesced_t) +
sizeof(mca_btl_openib_control_header_t);
if(OPAL_LIKELY(size <= eager_limit)) {
if(acquire_eager_rdma_send_credit(ep) == OMPI_SUCCESS) {
do_rdma = true;
}
}
/* if(!do_rdma && acquire_send_credit(ep, frag) != OMPI_SUCCESS) { */
/* Check send credits if it is no rdma */
if(!do_rdma) {
if(BTL_OPENIB_QP_TYPE_PP(qp)) {
if(OPAL_UNLIKELY(OPAL_THREAD_ADD32(&ep->qps[qp].u.pp_qp.sd_credits, -1) < 0)){
OPAL_THREAD_ADD32(&ep->qps[qp].u.pp_qp.sd_credits, 1);
goto no_credits_or_wqe;
}
} else {
if(OPAL_UNLIKELY(OPAL_THREAD_ADD32(&obtl->qps[qp].u.srq_qp.sd_credits, -1) < 0)){
OPAL_THREAD_ADD32(&obtl->qps[qp].u.srq_qp.sd_credits, 1);
goto no_credits_or_wqe;
}
}
}
/* Allocate fragment */
OMPI_FREE_LIST_GET(&obtl->device->qps[qp].send_free, item, rc);
if(OPAL_UNLIKELY(NULL == item)) {
/* we don't return NULL because maybe later we will try to coalesce */
goto no_frags;
}
frag = to_base_frag(item);
hdr = to_send_frag(item)->hdr;
frag->segment.base.seg_len = size;
frag->base.order = qp;
frag->base.des_flags = flags;
hdr->tag = tag;
to_com_frag(item)->endpoint = ep;
/* put match header */
memcpy(frag->segment.base.seg_addr.pval, header, header_size);
/* Pack data */
if(payload_size) {
size_t max_data;
struct iovec iov;
uint32_t iov_count;
/* pack the data into the supplied buffer */
iov.iov_base = (IOVBASE_TYPE*)((unsigned char*)frag->segment.base.seg_addr.pval + header_size);
iov.iov_len = max_data = payload_size;
iov_count = 1;
- Split the datatype engine into two parts: an MPI specific part in OMPI and a language agnostic part in OPAL. The convertor is completely moved into OPAL. This offers several benefits as described in RFC http://www.open-mpi.org/community/lists/devel/2009/07/6387.php namely: - Fewer basic types (int* and float* types, boolean and wchar - Fixing naming scheme to ompi-nomenclature. - Usability outside of the ompi-layer. - Due to the fixed nature of simple opal types, their information is completely known at compile time and therefore constified - With fewer datatypes (22), the actual sizes of bit-field types may be reduced from 64 to 32 bits, allowing reorganizing the opal_datatype structure, eliminating holes and keeping data required in convertor (upon send/recv) in one cacheline... This has implications to the convertor-datastructure and other parts of the code. - Several performance tests have been run, the netpipe latency does not change with this patch on Linux/x86-64 on the smoky cluster. - Extensive tests have been done to verify correctness (no new regressions) using: 1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and ompi-ddt: a. running both trunk and ompi-ddt resulted in no differences (except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run correctly). b. with --enable-memchecker and running under valgrind (one buglet when run with static found in test-suite, commited) 2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt: all passed (except for the dynamic/ tests failed!! as trunk/MTT) 3. compilation and usage of HDF5 tests on Jaguar using PGI and PathScale compilers. 4. compilation and usage on Scicortex. - Please note, that for the heterogeneous case, (-m32 compiled binaries/ompi), neither ompi-trunk, nor ompi-ddt branch would successfully launch. This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
(void)opal_convertor_pack( convertor, &iov, &iov_count, &max_data);
assert(max_data == payload_size);
}
/* Set all credits */
BTL_OPENIB_GET_CREDITS(ep->eager_rdma_local.credits, hdr->credits);
if(hdr->credits)
hdr->credits |= BTL_OPENIB_RDMA_CREDITS_FLAG;
if(!do_rdma) {
if(BTL_OPENIB_QP_TYPE_PP(qp) && 0 == hdr->credits) {
BTL_OPENIB_GET_CREDITS(ep->qps[qp].u.pp_qp.rd_credits, hdr->credits);
}
} else {
hdr->credits |= (qp << 11);
}
BTL_OPENIB_GET_CREDITS(ep->qps[qp].u.pp_qp.cm_return, cm_return);
/* cm_seen is only 8 bytes, but cm_return is 32 bytes */
if(cm_return > 255) {
hdr->cm_seen = 255;
cm_return -= 255;
OPAL_THREAD_ADD32(&ep->qps[qp].u.pp_qp.cm_return, cm_return);
} else {
hdr->cm_seen = cm_return;
}
ib_rc = post_send(ep, to_send_frag(item), do_rdma);
if(!ib_rc) {
#if BTL_OPENIB_FAILOVER_ENABLED
/* Return up in case needed for failover */
*descriptor = (struct mca_btl_base_descriptor_t *) frag;
#endif
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
return OMPI_SUCCESS;
}
/* Failed to send, do clean up all allocated resources */
if(ep->nbo) {
BTL_OPENIB_HEADER_NTOH(*hdr);
}
if(BTL_OPENIB_IS_RDMA_CREDITS(hdr->credits)) {
OPAL_THREAD_ADD32(&ep->eager_rdma_local.credits,
BTL_OPENIB_CREDITS(hdr->credits));
}
if (!do_rdma && BTL_OPENIB_QP_TYPE_PP(qp)) {
OPAL_THREAD_ADD32(&ep->qps[qp].u.pp_qp.rd_credits,
hdr->credits);
}
no_frags:
if(do_rdma) {
OPAL_THREAD_ADD32(&ep->eager_rdma_remote.tokens, 1);
} else {
if(BTL_OPENIB_QP_TYPE_PP(qp)) {
OPAL_THREAD_ADD32(&ep->qps[qp].u.pp_qp.sd_credits, 1);
} else if BTL_OPENIB_QP_TYPE_SRQ(qp){
OPAL_THREAD_ADD32(&obtl->qps[qp].u.srq_qp.sd_credits, 1);
}
}
no_credits_or_wqe:
qp_put_wqe(ep, qp);
cant_send:
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
/* We can not send the data directly, so we just return descriptor */
*descriptor = mca_btl_openib_alloc(btl, ep, order, size, flags);
return OMPI_ERR_RESOURCE_BUSY;
}
/*
* Initiate a send.
*/
int mca_btl_openib_send(
struct mca_btl_base_module_t* btl,
struct mca_btl_base_endpoint_t* ep,
struct mca_btl_base_descriptor_t* des,
mca_btl_base_tag_t tag)
{
mca_btl_openib_send_frag_t *frag;
assert(openib_frag_type(des) == MCA_BTL_OPENIB_FRAG_SEND ||
openib_frag_type(des) == MCA_BTL_OPENIB_FRAG_COALESCED);
if(openib_frag_type(des) == MCA_BTL_OPENIB_FRAG_COALESCED) {
to_coalesced_frag(des)->hdr->tag = tag;
to_coalesced_frag(des)->hdr->size = des->des_src->seg_len;
if(ep->nbo)
BTL_OPENIB_HEADER_COALESCED_HTON(*to_coalesced_frag(des)->hdr);
frag = to_coalesced_frag(des)->send_frag;
} else {
frag = to_send_frag(des);
to_com_frag(des)->endpoint = ep;
frag->hdr->tag = tag;
}
des->des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
return mca_btl_openib_endpoint_send(ep, frag);
}
/*
* RDMA WRITE local buffer to remote buffer address.
*/
int mca_btl_openib_put( mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* ep,
mca_btl_base_descriptor_t* descriptor)
{
mca_btl_openib_segment_t *src_seg = (mca_btl_openib_segment_t *) descriptor->des_src;
mca_btl_openib_segment_t *dst_seg = (mca_btl_openib_segment_t *) descriptor->des_dst;
struct ibv_send_wr* bad_wr;
mca_btl_openib_out_frag_t* frag = to_out_frag(descriptor);
int qp = descriptor->order;
uint64_t rem_addr = dst_seg->base.seg_addr.lval;
uint32_t rkey = dst_seg->key;
assert(openib_frag_type(frag) == MCA_BTL_OPENIB_FRAG_SEND_USER ||
openib_frag_type(frag) == MCA_BTL_OPENIB_FRAG_SEND);
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
descriptor->des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
if(ep->endpoint_state != MCA_BTL_IB_CONNECTED) {
int rc;
OPAL_THREAD_LOCK(&ep->endpoint_lock);
rc = check_endpoint_state(ep, descriptor, &ep->pending_put_frags);
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
if(OMPI_ERR_RESOURCE_BUSY == rc)
return OMPI_SUCCESS;
if(OMPI_SUCCESS != rc)
return rc;
}
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
if(MCA_BTL_NO_ORDER == qp)
qp = mca_btl_openib_component.rdma_qp;
/* check for a send wqe */
if (qp_get_wqe(ep, qp) < 0) {
qp_put_wqe(ep, qp);
OPAL_THREAD_LOCK(&ep->endpoint_lock);
opal_list_append(&ep->pending_put_frags, (opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
return OMPI_SUCCESS;
}
/* post descriptor */
#if OPAL_ENABLE_HETEROGENEOUS_SUPPORT
if((ep->endpoint_proc->proc_ompi->proc_arch & OPAL_ARCH_ISBIGENDIAN)
!= (ompi_proc_local()->proc_arch & OPAL_ARCH_ISBIGENDIAN)) {
rem_addr = opal_swap_bytes8(rem_addr);
rkey = opal_swap_bytes4(rkey);
}
#endif
frag->sr_desc.wr.rdma.remote_addr = rem_addr;
frag->sr_desc.wr.rdma.rkey = rkey;
to_com_frag(frag)->sg_entry.addr = src_seg->base.seg_addr.lval;
to_com_frag(frag)->sg_entry.length = src_seg->base.seg_len;
to_com_frag(frag)->endpoint = ep;
#if HAVE_XRC
if (MCA_BTL_XRC_ENABLED && BTL_OPENIB_QP_TYPE_XRC(qp))
frag->sr_desc.xrc_remote_srq_num=ep->rem_info.rem_srqs[qp].rem_srq_num;
#endif
descriptor->order = qp;
/* Setting opcode on a frag constructor isn't enough since prepare_src
* may return send_frag instead of put_frag */
frag->sr_desc.opcode = IBV_WR_RDMA_WRITE;
frag->sr_desc.send_flags = ib_send_flags(src_seg->base.seg_len, &(ep->qps[qp]));
if(ibv_post_send(ep->qps[qp].qp->lcl_qp, &frag->sr_desc, &bad_wr))
return OMPI_ERROR;
return OMPI_SUCCESS;
}
/*
* RDMA READ remote buffer to local buffer address.
*/
int mca_btl_openib_get(mca_btl_base_module_t* btl,
mca_btl_base_endpoint_t* ep,
mca_btl_base_descriptor_t* descriptor)
{
mca_btl_openib_segment_t *src_seg = (mca_btl_openib_segment_t *) descriptor->des_src;
mca_btl_openib_segment_t *dst_seg = (mca_btl_openib_segment_t *) descriptor->des_dst;
struct ibv_send_wr* bad_wr;
mca_btl_openib_get_frag_t* frag = to_get_frag(descriptor);
int qp = descriptor->order;
uint64_t rem_addr = src_seg->base.seg_addr.lval;
uint32_t rkey = src_seg->key;
assert(openib_frag_type(frag) == MCA_BTL_OPENIB_FRAG_RECV_USER);
descriptor->des_flags |= MCA_BTL_DES_SEND_ALWAYS_CALLBACK;
if(ep->endpoint_state != MCA_BTL_IB_CONNECTED) {
int rc;
OPAL_THREAD_LOCK(&ep->endpoint_lock);
rc = check_endpoint_state(ep, descriptor, &ep->pending_get_frags);
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
if(OMPI_ERR_RESOURCE_BUSY == rc)
return OMPI_SUCCESS;
if(OMPI_SUCCESS != rc)
return rc;
}
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
if(MCA_BTL_NO_ORDER == qp)
qp = mca_btl_openib_component.rdma_qp;
/* check for a send wqe */
if (qp_get_wqe(ep, qp) < 0) {
qp_put_wqe(ep, qp);
OPAL_THREAD_LOCK(&ep->endpoint_lock);
opal_list_append(&ep->pending_get_frags, (opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
return OMPI_SUCCESS;
}
/* check for a get token */
if(OPAL_THREAD_ADD32(&ep->get_tokens,-1) < 0) {
qp_put_wqe(ep, qp);
OPAL_THREAD_ADD32(&ep->get_tokens,1);
OPAL_THREAD_LOCK(&ep->endpoint_lock);
opal_list_append(&ep->pending_get_frags, (opal_list_item_t*)frag);
OPAL_THREAD_UNLOCK(&ep->endpoint_lock);
return OMPI_SUCCESS;
}
#if OPAL_ENABLE_HETEROGENEOUS_SUPPORT
if((ep->endpoint_proc->proc_ompi->proc_arch & OPAL_ARCH_ISBIGENDIAN)
!= (ompi_proc_local()->proc_arch & OPAL_ARCH_ISBIGENDIAN)) {
rem_addr = opal_swap_bytes8(rem_addr);
rkey = opal_swap_bytes4(rkey);
}
#endif
frag->sr_desc.wr.rdma.remote_addr = rem_addr;
frag->sr_desc.wr.rdma.rkey = rkey;
to_com_frag(frag)->sg_entry.addr = dst_seg->base.seg_addr.lval;
to_com_frag(frag)->sg_entry.length = dst_seg->base.seg_len;
to_com_frag(frag)->endpoint = ep;
#if HAVE_XRC
if (MCA_BTL_XRC_ENABLED && BTL_OPENIB_QP_TYPE_XRC(qp))
frag->sr_desc.xrc_remote_srq_num=ep->rem_info.rem_srqs[qp].rem_srq_num;
#endif
descriptor->order = qp;
if(ibv_post_send(ep->qps[qp].qp->lcl_qp, &frag->sr_desc, &bad_wr))
return OMPI_ERROR;
This commit brings in two major things: 1. Galen's fine-grain control of queue pair resources in the openib BTL. 1. Pasha's new implementation of asychronous HCA event handling. Pasha's new implementation doesn't take much explanation, but the new "multifrag" stuff does. Note that "svn merge" was not used to bring this new code from the /tmp/ib_multifrag branch -- something Bad happened in the periodic trunk pulls on that branch making an actual merge back to the trunk effectively impossible (i.e., lots and lots of arbitrary conflicts and artifical changes). :-( == Fine-grain control of queue pair resources == Galen's fine-grain control of queue pair resources to the OpenIB BTL (thanks to Gleb for fixing broken code and providing additional functionality, Pasha for finding broken code, and Jeff for doing all the svn work and regression testing). Prior to this commit, the OpenIB BTL created two queue pairs: one for eager size fragments and one for max send size fragments. When the use of the shared receive queue (SRQ) was specified (via "-mca btl_openib_use_srq 1"), these QPs would use a shared receive queue for receive buffers instead of the default per-peer (PP) receive queues and buffers. One consequence of this design is that receive buffer utilization (the size of the data received as a percentage of the receive buffer used for the data) was quite poor for a number of applications. The new design allows multiple QPs to be specified at runtime. Each QP can be setup to use PP or SRQ receive buffers as well as giving fine-grained control over receive buffer size, number of receive buffers to post, when to replenish the receive queue (low water mark) and for SRQ QPs, the number of outstanding sends can also be specified. The following is an example of the syntax to describe QPs to the OpenIB BTL using the new MCA parameter btl_openib_receive_queues: {{{ -mca btl_openib_receive_queues \ "P,128,16,4;S,1024,256,128,32;S,4096,256,128,32;S,65536,256,128,32" }}} Each QP description is delimited by ";" (semicolon) with individual fields of the QP description delimited by "," (comma). The above example therefore describes 4 QPs. The first QP is: P,128,16,4 Meaning: per-peer receive buffer QPs are indicated by a starting field of "P"; the first QP (shown above) is therefore a per-peer based QP. The second field indicates the size of the receive buffer in bytes (128 bytes). The third field indicates the number of receive buffers to allocate to the QP (16). The fourth field indicates the low watermark for receive buffers at which time the BTL will repost receive buffers to the QP (4). The second QP is: S,1024,256,128,32 Shared receive queue based QPs are indicated by a starting field of "S"; the second QP (shown above) is therefore a shared receive queue based QP. The second, third and fourth fields are the same as in the per-peer based QP. The fifth field is the number of outstanding sends that are allowed at a given time on the QP (32). This provides a "good enough" mechanism of flow control for some regular communication patterns. QPs MUST be specified in ascending receive buffer size order. This requirement may be removed prior to 1.3 release. This commit was SVN r15474.
2007-07-18 05:15:59 +04:00
return OMPI_SUCCESS;
}
#if OPAL_ENABLE_FT_CR == 0
int mca_btl_openib_ft_event(int state) {
return OMPI_SUCCESS;
}
#else
int mca_btl_openib_ft_event(int state) {
int i;
if(OPAL_CRS_CHECKPOINT == state) {
/* Continue must reconstruct the routes (including modex), since we
* have to tear down the devices completely. */
orte_cr_continue_like_restart = true;
/*
* To keep the node from crashing we need to call ibv_close_device
* before the checkpoint is taken. To do this we need to tear
* everything down, and rebuild it all on continue/restart. :(
*/
/* Shutdown all modules
* - Do this backwards since the openib_finalize function also loops
* over this variable.
*/
for (i = 0; i < mca_btl_openib_component.ib_num_btls; ++i ) {
mca_btl_openib_finalize_resources( &(mca_btl_openib_component.openib_btls[i])->super);
}
mca_btl_openib_component.devices_count = 0;
mca_btl_openib_component.ib_num_btls = 0;
OBJ_DESTRUCT(&mca_btl_openib_component.ib_procs);
ompi_btl_openib_connect_base_finalize();
}
else if(OPAL_CRS_CONTINUE == state) {
; /* Cleared by forcing the modex, no work needed */
}
else if(OPAL_CRS_RESTART == state) {
;
}
else if(OPAL_CRS_TERM == state ) {
;
}
else {
;
}
return OMPI_SUCCESS;
}
#endif /* OPAL_ENABLE_FT_CR */