2007-12-21 09:02:00 +03:00
|
|
|
/* -*- Mode: C; c-basic-offset:4 ; -*- */
|
2004-01-10 11:20:36 +03:00
|
|
|
/*
|
2006-03-04 21:35:33 +03:00
|
|
|
* Copyright (c) 2004-2006 The Trustees of Indiana University and Indiana
|
2005-11-05 22:57:48 +03:00
|
|
|
* University Research and Technology
|
|
|
|
* Corporation. All rights reserved.
|
2007-12-21 09:02:00 +03:00
|
|
|
* Copyright (c) 2004-2007 The University of Tennessee and The University
|
2005-11-05 22:57:48 +03:00
|
|
|
* of Tennessee Research Foundation. All rights
|
|
|
|
* reserved.
|
2007-06-19 09:03:11 +04:00
|
|
|
* Copyright (c) 2004-2007 High Performance Computing Center Stuttgart,
|
2004-11-28 23:09:25 +03:00
|
|
|
* University of Stuttgart. All rights reserved.
|
2005-03-24 15:43:37 +03:00
|
|
|
* Copyright (c) 2004-2005 The Regents of the University of California.
|
|
|
|
* All rights reserved.
|
2008-02-17 22:38:20 +03:00
|
|
|
* Copyright (c) 2008 UT-Battelle, LLC
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Copyright (c) 2008-2012 Cisco Systems, Inc. All rights reserved.
|
2009-02-24 20:17:33 +03:00
|
|
|
* Copyright (c) 2009 Sun Microsystems, Inc. All rights reserved.
|
2004-11-22 04:38:40 +03:00
|
|
|
* $COPYRIGHT$
|
|
|
|
*
|
|
|
|
* Additional copyrights may follow
|
|
|
|
*
|
2004-01-10 11:20:36 +03:00
|
|
|
* $HEADER$
|
|
|
|
*/
|
2004-06-29 04:02:25 +04:00
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
*
|
|
|
|
* Public interface for the MPI_Op handle.
|
|
|
|
*/
|
2004-01-10 11:20:36 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
#ifndef OMPI_OP_H
|
|
|
|
#define OMPI_OP_H
|
2004-01-10 11:20:36 +03:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
#include "ompi_config.h"
|
2004-04-21 02:37:46 +04:00
|
|
|
|
2008-02-17 22:38:20 +03:00
|
|
|
#include <stdio.h>
|
|
|
|
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
#include "mpi.h"
|
2004-04-21 02:37:46 +04:00
|
|
|
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
#include "opal/class/opal_object.h"
|
2004-06-29 04:02:25 +04:00
|
|
|
|
- Split the datatype engine into two parts: an MPI specific part in
OMPI
and a language agnostic part in OPAL. The convertor is completely
moved into OPAL. This offers several benefits as described in RFC
http://www.open-mpi.org/community/lists/devel/2009/07/6387.php
namely:
- Fewer basic types (int* and float* types, boolean and wchar
- Fixing naming scheme to ompi-nomenclature.
- Usability outside of the ompi-layer.
- Due to the fixed nature of simple opal types, their information is
completely
known at compile time and therefore constified
- With fewer datatypes (22), the actual sizes of bit-field types may be
reduced
from 64 to 32 bits, allowing reorganizing the opal_datatype
structure, eliminating holes and keeping data required in convertor
(upon send/recv) in one cacheline...
This has implications to the convertor-datastructure and other parts
of the code.
- Several performance tests have been run, the netpipe latency does not
change with
this patch on Linux/x86-64 on the smoky cluster.
- Extensive tests have been done to verify correctness (no new
regressions) using:
1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and
ompi-ddt:
a. running both trunk and ompi-ddt resulted in no differences
(except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run
correctly).
b. with --enable-memchecker and running under valgrind (one buglet
when run with static found in test-suite, commited)
2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt:
all passed (except for the dynamic/ tests failed!! as trunk/MTT)
3. compilation and usage of HDF5 tests on Jaguar using PGI and
PathScale compilers.
4. compilation and usage on Scicortex.
- Please note, that for the heterogeneous case, (-m32 compiled
binaries/ompi), neither
ompi-trunk, nor ompi-ddt branch would successfully launch.
This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
|
|
|
#include "ompi/datatype/ompi_datatype.h"
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
#include "ompi/mpi/fortran/base/fint_2_int.h"
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
#include "ompi/mca/op/op.h"
|
2004-04-21 02:37:46 +04:00
|
|
|
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
BEGIN_C_DECLS
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* Typedef for C op functions for user-defined MPI_Ops.
|
2004-06-29 04:02:25 +04:00
|
|
|
*
|
|
|
|
* We don't use MPI_User_function because this would create a
|
|
|
|
* confusing dependency loop between this file and mpi.h. So this is
|
|
|
|
* repeated code, but it's better this way (and this typedef will
|
|
|
|
* never change, so there's not much of a maintenance worry).
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
typedef void (ompi_op_c_handler_fn_t)(void *, void *, int *,
|
|
|
|
struct ompi_datatype_t **);
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* Typedef for fortran user-defined MPI_Ops.
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
typedef void (ompi_op_fortran_handler_fn_t)(void *, void *,
|
|
|
|
MPI_Fint *, MPI_Fint *);
|
2004-04-21 02:37:46 +04:00
|
|
|
|
2005-12-23 19:49:09 +03:00
|
|
|
/**
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* Typedef for C++ op functions intercept (used for user-defined
|
|
|
|
* MPI::Ops).
|
2005-12-23 19:49:09 +03:00
|
|
|
*
|
|
|
|
* See the lengthy explanation for why this is different than the C
|
|
|
|
* intercept in ompi/mpi/cxx/intercepts.cc in the
|
|
|
|
* ompi_mpi_cxx_op_intercept() function.
|
|
|
|
*/
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
typedef void (ompi_op_cxx_handler_fn_t)(void *, void *, int *,
|
|
|
|
struct ompi_datatype_t **,
|
|
|
|
MPI_User_function * op);
|
2005-12-23 19:49:09 +03:00
|
|
|
|
2013-09-27 01:36:44 +04:00
|
|
|
/**
|
|
|
|
* Typedef for Java op functions intercept (used for user-defined
|
|
|
|
* MPI.Ops).
|
|
|
|
*
|
|
|
|
* See the lengthy explanation for why this is different than the C
|
|
|
|
* intercept in ompi/mpi/cxx/intercepts.cc in the
|
|
|
|
* ompi_mpi_cxx_op_intercept() function.
|
|
|
|
*/
|
|
|
|
typedef void (ompi_op_java_handler_fn_t)(void *, void *, int *,
|
|
|
|
struct ompi_datatype_t **,
|
|
|
|
int baseType,
|
|
|
|
void *jnienv, void *object);
|
|
|
|
|
2004-06-29 04:02:25 +04:00
|
|
|
/*
|
|
|
|
* Flags for MPI_Op
|
|
|
|
*/
|
2005-09-08 13:47:27 +04:00
|
|
|
/** Set if the MPI_Op is a built-in operation */
|
2004-06-29 04:02:25 +04:00
|
|
|
#define OMPI_OP_FLAGS_INTRINSIC 0x0001
|
2005-09-08 13:47:27 +04:00
|
|
|
/** Set if the callback function is in Fortran */
|
2004-06-29 04:02:25 +04:00
|
|
|
#define OMPI_OP_FLAGS_FORTRAN_FUNC 0x0002
|
2005-12-23 19:49:09 +03:00
|
|
|
/** Set if the callback function is in C++ */
|
|
|
|
#define OMPI_OP_FLAGS_CXX_FUNC 0x0004
|
2013-09-27 01:36:44 +04:00
|
|
|
/** Set if the callback function is in Java */
|
|
|
|
#define OMPI_OP_FLAGS_JAVA_FUNC 0x0008
|
2005-09-08 13:47:27 +04:00
|
|
|
/** Set if the callback function is associative (MAX and SUM will both
|
|
|
|
have ASSOC set -- in fact, it will only *not* be set if we
|
|
|
|
implement some extensions to MPI, because MPI says that all
|
|
|
|
MPI_Op's should be associative, so this flag is really here for
|
|
|
|
future expansion) */
|
2013-09-27 01:36:44 +04:00
|
|
|
#define OMPI_OP_FLAGS_ASSOC 0x0010
|
2005-09-08 13:47:27 +04:00
|
|
|
/** Set if the callback function is associative for floating point
|
|
|
|
operands (e.g., MPI_SUM will have ASSOC set, but will *not* have
|
|
|
|
FLOAT_ASSOC set) */
|
2013-09-27 01:36:44 +04:00
|
|
|
#define OMPI_OP_FLAGS_FLOAT_ASSOC 0x0020
|
2005-09-08 13:47:27 +04:00
|
|
|
/** Set if the callback function is communative */
|
2013-09-27 01:36:44 +04:00
|
|
|
#define OMPI_OP_FLAGS_COMMUTE 0x0040
|
2004-06-29 04:02:25 +04:00
|
|
|
|
|
|
|
|
2014-01-22 19:39:19 +04:00
|
|
|
|
|
|
|
|
2014-04-22 03:30:05 +04:00
|
|
|
/*
|
|
|
|
* Basic operation type for predefined types.
|
|
|
|
*/
|
2014-01-22 19:39:19 +04:00
|
|
|
enum ompi_op_type {
|
|
|
|
OMPI_OP_NULL,
|
|
|
|
OMPI_OP_MAX,
|
|
|
|
OMPI_OP_MIN,
|
|
|
|
OMPI_OP_SUM,
|
|
|
|
OMPI_OP_PROD,
|
|
|
|
OMPI_OP_LAND,
|
|
|
|
OMPI_OP_BAND,
|
|
|
|
OMPI_OP_LOR,
|
|
|
|
OMPI_OP_BOR,
|
|
|
|
OMPI_OP_LXOR,
|
|
|
|
OMPI_OP_BXOR,
|
|
|
|
OMPI_OP_MAXLOC,
|
|
|
|
OMPI_OP_MINLOC,
|
|
|
|
OMPI_OP_REPLACE,
|
|
|
|
OMPI_OP_NUM_OF_TYPES
|
|
|
|
};
|
2004-04-21 02:37:46 +04:00
|
|
|
/**
|
|
|
|
* Back-end type of MPI_Op
|
|
|
|
*/
|
2004-06-07 19:33:53 +04:00
|
|
|
struct ompi_op_t {
|
2008-12-31 17:50:54 +03:00
|
|
|
/** Parent class, for reference counting */
|
|
|
|
opal_object_t super;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
2008-12-31 17:50:54 +03:00
|
|
|
/** Name, for debugging purposes */
|
|
|
|
char o_name[MPI_MAX_OBJECT_NAME];
|
2004-01-10 11:20:36 +03:00
|
|
|
|
2014-01-22 19:39:19 +04:00
|
|
|
enum ompi_op_type op_type;
|
|
|
|
|
2008-12-31 17:50:54 +03:00
|
|
|
/** Flags about the op */
|
|
|
|
uint32_t o_flags;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
2008-12-31 17:50:54 +03:00
|
|
|
/** Index in Fortran <-> C translation array */
|
|
|
|
int o_f_to_c_index;
|
2008-03-29 02:45:44 +03:00
|
|
|
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
/** Union holding (2-buffer functions):
|
|
|
|
1. Function pointers for all supported datatypes when this op
|
|
|
|
is intrinsic
|
|
|
|
2. Function pointers for when this op is user-defined (only
|
|
|
|
need one function pointer for this; we call it for *all*
|
|
|
|
datatypes, even intrinsics)
|
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
union {
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
/** Function/module pointers for intrinsic ops */
|
|
|
|
ompi_op_base_op_fns_t intrinsic;
|
|
|
|
/** C handler function pointer */
|
|
|
|
ompi_op_c_handler_fn_t *c_fn;
|
|
|
|
/** Fortran handler function pointer */
|
|
|
|
ompi_op_fortran_handler_fn_t *fort_fn;
|
|
|
|
/** C++ intercept function data -- see lengthy comment in
|
|
|
|
ompi/mpi/cxx/intercepts.cc::ompi_mpi_cxx_op_intercept() for
|
|
|
|
an explanation */
|
|
|
|
struct {
|
|
|
|
/* The user's function (it's the wrong type, but that's ok) */
|
|
|
|
ompi_op_c_handler_fn_t *user_fn;
|
|
|
|
/* The OMPI C++ callback/intercept function */
|
|
|
|
ompi_op_cxx_handler_fn_t *intercept_fn;
|
|
|
|
} cxx_data;
|
2013-09-27 01:36:44 +04:00
|
|
|
struct {
|
|
|
|
/* The OMPI C++ callback/intercept function */
|
|
|
|
ompi_op_java_handler_fn_t *intercept_fn;
|
|
|
|
/* The Java run time environment */
|
|
|
|
void *jnienv, *object;
|
|
|
|
int baseType;
|
|
|
|
} java_data;
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
} o_func;
|
|
|
|
|
|
|
|
/** 3-buffer functions, which is only for intrinsic ops. No need
|
|
|
|
for the C/C++/Fortran user-defined functions. */
|
|
|
|
ompi_op_base_op_3buff_fns_t o_3buff_intrinsic;
|
2004-01-10 20:10:29 +03:00
|
|
|
};
|
2008-03-29 02:45:44 +03:00
|
|
|
|
2004-06-29 04:02:25 +04:00
|
|
|
/**
|
|
|
|
* Convenience typedef
|
|
|
|
*/
|
2004-06-07 19:33:53 +04:00
|
|
|
typedef struct ompi_op_t ompi_op_t;
|
2006-08-24 20:38:08 +04:00
|
|
|
OMPI_DECLSPEC OBJ_CLASS_DECLARATION(ompi_op_t);
|
2004-04-21 02:37:46 +04:00
|
|
|
|
2009-02-24 20:17:33 +03:00
|
|
|
/**
|
|
|
|
* Padded struct to maintain back compatibiltiy.
|
|
|
|
* See ompi/communicator/communicator.h comments with struct ompi_communicator_t
|
|
|
|
* for full explanation why we chose the following padding construct for predefines.
|
|
|
|
*/
|
|
|
|
#define PREDEFINED_OP_PAD (sizeof(void*) * 256)
|
|
|
|
|
|
|
|
struct ompi_predefined_op_t {
|
|
|
|
struct ompi_op_t op;
|
|
|
|
char padding[PREDEFINED_OP_PAD - sizeof(ompi_op_t)];
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct ompi_predefined_op_t ompi_predefined_op_t;
|
|
|
|
|
2004-04-21 02:37:46 +04:00
|
|
|
/**
|
2004-06-29 04:02:25 +04:00
|
|
|
* Array to map ddt->id values to the corresponding position in the op
|
|
|
|
* function array.
|
|
|
|
*
|
|
|
|
* NOTE: It is possible to have an implementation without this map.
|
|
|
|
* There are basically 3 choices for implementing "how to find the
|
|
|
|
* right position in the op array based on the datatype":
|
|
|
|
*
|
|
|
|
* 1. Use the exact same ordering as ddt->id in the op map. This is
|
|
|
|
* nice in that it's always a direct lookup via one memory
|
|
|
|
* de-reference. But it makes a sparse op array, and it's at least
|
|
|
|
* somewhat wasteful. It also chains the ddt and op implementations
|
|
|
|
* together. If the ddt ever changes its ordering, op is screwed. It
|
|
|
|
* seemed safer from a maintenance point of view not to do it that
|
|
|
|
* way.
|
|
|
|
*
|
|
|
|
* 2. Re-arrange the ddt ID values so that all the reducable types are
|
|
|
|
* at the beginning. This means that we can have a dense array here
|
|
|
|
* in op, but then we have the same problem as number one -- and so
|
|
|
|
* this didn't seem like a good idea from a maintenance point of view.
|
|
|
|
*
|
|
|
|
* 3. Create a mapping between the ddt->id values and the position in
|
|
|
|
* the op array. This allows a nice dense op array, and if we make
|
|
|
|
* the map based on symbolic values, then if ddt ever changes its
|
|
|
|
* ordering, it won't matter to op. This seemed like the safest thing
|
|
|
|
* to do from a maintenance perspective, and since it only costs one
|
|
|
|
* extra lookup, and that lookup is way cheaper than the function call
|
|
|
|
* to invoke the reduction operation, it seemed like the best idea.
|
|
|
|
*/
|
- Split the datatype engine into two parts: an MPI specific part in
OMPI
and a language agnostic part in OPAL. The convertor is completely
moved into OPAL. This offers several benefits as described in RFC
http://www.open-mpi.org/community/lists/devel/2009/07/6387.php
namely:
- Fewer basic types (int* and float* types, boolean and wchar
- Fixing naming scheme to ompi-nomenclature.
- Usability outside of the ompi-layer.
- Due to the fixed nature of simple opal types, their information is
completely
known at compile time and therefore constified
- With fewer datatypes (22), the actual sizes of bit-field types may be
reduced
from 64 to 32 bits, allowing reorganizing the opal_datatype
structure, eliminating holes and keeping data required in convertor
(upon send/recv) in one cacheline...
This has implications to the convertor-datastructure and other parts
of the code.
- Several performance tests have been run, the netpipe latency does not
change with
this patch on Linux/x86-64 on the smoky cluster.
- Extensive tests have been done to verify correctness (no new
regressions) using:
1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and
ompi-ddt:
a. running both trunk and ompi-ddt resulted in no differences
(except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run
correctly).
b. with --enable-memchecker and running under valgrind (one buglet
when run with static found in test-suite, commited)
2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt:
all passed (except for the dynamic/ tests failed!! as trunk/MTT)
3. compilation and usage of HDF5 tests on Jaguar using PGI and
PathScale compilers.
4. compilation and usage on Scicortex.
- Please note, that for the heterogeneous case, (-m32 compiled
binaries/ompi), neither
ompi-trunk, nor ompi-ddt branch would successfully launch.
This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
|
|
|
OMPI_DECLSPEC extern int ompi_op_ddt_map[OMPI_DATATYPE_MAX_PREDEFINED];
|
2004-06-29 04:02:25 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_OP_NULL (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_null;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_null_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_MAX (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_max;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_max_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_MIN (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_min;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_min_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_SUM (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_sum;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_sum_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_PROD (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_prod;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_prod_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_LAND (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_land;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_land_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_BAND (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_band;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_band_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_LOR (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_lor;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_lor_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_BOR (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_bor;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_bor_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_LXOR (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_lxor;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_lxor_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_BXOR (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_bxor;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_bxor_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_MAXLOC (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_maxloc;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_maxloc_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_MINLOC (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_minloc;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_minloc_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
* Global variable for MPI_REPLACE (_addr flavor is for F03 bindings)
|
2004-04-21 02:37:46 +04:00
|
|
|
*/
|
2009-02-24 20:17:33 +03:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_replace;
|
== Highlights ==
1. New mpifort wrapper compiler: you can utilize mpif.h, use mpi, and use mpi_f08 through this one wrapper compiler
1. mpif77 and mpif90 still exist, but are sym links to mpifort and may be removed in a future release
1. The mpi module has been re-implemented and is significantly "mo' bettah"
1. The mpi_f08 module offers many, many improvements over mpif.h and the mpi module
This stuff is coming from a VERY long-lived mercurial branch (3 years!); it'll almost certainly take a few SVN commits and a bunch of testing before I get it correctly committed to the SVN trunk.
== More details ==
Craig Rasmussen and I have been working with the MPI-3 Fortran WG and Fortran J3 committees for a long, long time to make a prototype MPI-3 Fortran bindings implementation. We think we're at a stable enough state to bring this stuff back to the trunk, with the goal of including it in OMPI v1.7.
Special thanks go out to everyone who has been incredibly patient and helpful to us in this journey:
* Rolf Rabenseifner/HLRS (mastermind/genius behind the entire MPI-3 Fortran effort)
* The Fortran J3 committee
* Tobias Burnus/gfortran
* Tony !Goetz/Absoft
* Terry !Donte/Oracle
* ...and probably others whom I'm forgetting :-(
There's still opportunities for optimization in the mpi_f08 implementation, but by and large, it is as far along as it can be until Fortran compilers start implementing the new F08 dimension(..) syntax.
Note that gfortran is currently unsupported for the mpi_f08 module and the new mpi module. gfortran users will a) fall back to the same mpi module implementation that is in OMPI v1.5.x, and b) not get the new mpi_f08 module. The gfortran maintainers are actively working hard to add the necessary features to support both the new mpi_f08 module and the new mpi module implementations. This will take some time.
As mentioned above, ompi/mpi/f77 and ompi/mpi/f90 no longer exist. All the fortran bindings implementations have been collated under ompi/mpi/fortran; each implementation has its own subdirectory:
{{{
ompi/mpi/fortran/
base/ - glue code
mpif-h/ - what used to be ompi/mpi/f77
use-mpi-tkr/ - what used to be ompi/mpi/f90
use-mpi-ignore-tkr/ - new mpi module implementation
use-mpi-f08/ - new mpi_f08 module implementation
}}}
There's also a prototype 6-function-MPI implementation under use-mpi-f08-desc that emulates the new F08 dimension(..) syntax that isn't fully available in Fortran compilers yet. We did that to prove it to ourselves that it could be done once the compilers fully support it. This directory/implementation will likely eventually replace the use-mpi-f08 version.
Other things that were done:
* ompi_info grew a few new output fields to describe what level of Fortran support is included
* Existing Fortran examples in examples/ were renamed; new mpi_f08 examples were added
* The old Fortran MPI libraries were renamed:
* libmpi_f77 -> libmpi_mpifh
* libmpi_f90 -> libmpi_usempi
* The configury for Fortran was consolidated and significantly slimmed down. Note that the F77 env variable is now IGNORED for configure; you should only use FC. Example:
{{{
shell$ ./configure CC=icc CXX=icpc FC=ifort ...
}}}
All of this work was done in a Mercurial branch off the SVN trunk, and hosted at Bitbucket. This branch has got to be one of OMPI's longest-running branches. Its first commit was Tue Apr 07 23:01:46 2009 -0400 -- it's over 3 years old! :-) We think we've pulled in all relevant changes from the OMPI trunk (e.g., Fortran implementations of the new MPI-3 MPROBE stuff for mpif.h, use mpi, and use mpi_f08, and the recent Fujitsu Fortran patches).
I anticipate some instability when we bring this stuff into the trunk, simply because it touches a LOT of code in the MPI layer in the OMPI code base. We'll try our best to make it as pain-free as possible, but please bear with us when it is committed.
This commit was SVN r26283.
2012-04-18 19:57:29 +04:00
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t *ompi_mpi_op_replace_addr;
|
2004-04-21 02:37:46 +04:00
|
|
|
|
2014-02-25 21:36:43 +04:00
|
|
|
/**
|
|
|
|
* Global variable for MPI_NO_OP
|
|
|
|
*/
|
|
|
|
OMPI_DECLSPEC extern ompi_predefined_op_t ompi_mpi_op_no_op;
|
|
|
|
|
2004-04-21 02:37:46 +04:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Table for Fortran <-> C op handle conversion
|
|
|
|
*/
|
2007-12-21 09:02:00 +03:00
|
|
|
extern struct opal_pointer_array_t *ompi_op_f_to_c_table;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initialize the op interface.
|
|
|
|
*
|
|
|
|
* @returns OMPI_SUCCESS Upon success
|
|
|
|
* @returns OMPI_ERROR Otherwise
|
|
|
|
*
|
|
|
|
* Invoked from ompi_mpi_init(); sets up the op interface, creates
|
|
|
|
* the predefined MPI operations, and creates the corresopnding F2C
|
|
|
|
* translation table.
|
|
|
|
*/
|
|
|
|
int ompi_op_init(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Finalize the op interface.
|
|
|
|
*
|
|
|
|
* @returns OMPI_SUCCESS Always
|
|
|
|
*
|
|
|
|
* Invokes from ompi_mpi_finalize(); tears down the op interface, and
|
|
|
|
* destroys the F2C translation table.
|
|
|
|
*/
|
|
|
|
int ompi_op_finalize(void);
|
|
|
|
|
|
|
|
/**
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* Create a ompi_op_t with a user-defined callback (vs. creating an
|
|
|
|
* intrinsic ompi_op_t).
|
2007-12-21 09:02:00 +03:00
|
|
|
*
|
|
|
|
* @param commute Boolean indicating whether the operation is
|
|
|
|
* communative or not
|
|
|
|
* @param func Function pointer of the error handler
|
|
|
|
*
|
|
|
|
* @returns op Pointer to the ompi_op_t that will be
|
|
|
|
* created and returned
|
|
|
|
*
|
|
|
|
* This function is called as the back-end of all the MPI_OP_CREATE
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* function. It creates a new ompi_op_t object, initializes it to the
|
|
|
|
* correct object type, and sets the callback function on it.
|
2007-12-21 09:02:00 +03:00
|
|
|
*
|
|
|
|
* The type of the function pointer is (arbitrarily) the fortran
|
|
|
|
* function handler type. Since this function has to accept 2
|
|
|
|
* different function pointer types (lest we have 2 different
|
|
|
|
* functions to create errhandlers), the fortran one was picked
|
|
|
|
* arbitrarily. Note that (void*) is not sufficient because at
|
|
|
|
* least theoretically, a sizeof(void*) may not necessarily be the
|
|
|
|
* same as sizeof(void(*)).
|
|
|
|
*
|
|
|
|
* NOTE: It *always* sets the "fortran" flag to false. The Fortran
|
|
|
|
* wrapper for MPI_OP_CREATE is expected to reset this flag to true
|
|
|
|
* manually.
|
|
|
|
*/
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
ompi_op_t *ompi_op_create_user(bool commute,
|
|
|
|
ompi_op_fortran_handler_fn_t func);
|
2007-12-21 09:02:00 +03:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Mark an MPI_Op as holding a C++ callback function, and cache
|
|
|
|
* that function in the MPI_Op. See a lenghty comment in
|
|
|
|
* ompi/mpi/cxx/op.c::ompi_mpi_cxx_op_intercept() for a full
|
|
|
|
* expalantion.
|
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
OMPI_DECLSPEC void ompi_op_set_cxx_callback(ompi_op_t * op,
|
|
|
|
MPI_User_function * fn);
|
2005-12-23 19:49:09 +03:00
|
|
|
|
2013-09-27 01:36:44 +04:00
|
|
|
/**
|
|
|
|
* Similar to ompi_op_set_cxx_callback(), mark an MPI_Op as holding a
|
|
|
|
* Java calback function, and cache that function in the MPI_Op.
|
|
|
|
*/
|
|
|
|
OMPI_DECLSPEC void ompi_op_set_java_callback(ompi_op_t *op, void *jnienv,
|
|
|
|
void *object, int baseType);
|
|
|
|
|
2004-04-21 03:11:11 +04:00
|
|
|
/**
|
|
|
|
* Check to see if an op is intrinsic.
|
|
|
|
*
|
|
|
|
* @param op The op to check
|
|
|
|
*
|
|
|
|
* @returns true If the op is intrinsic
|
|
|
|
* @returns false If the op is not intrinsic
|
|
|
|
*
|
|
|
|
* Self-explanitory. This is needed in a few top-level MPI functions;
|
|
|
|
* this function is provided to hide the internal structure field
|
|
|
|
* names.
|
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
static inline bool ompi_op_is_intrinsic(ompi_op_t * op)
|
2004-04-21 03:11:11 +04:00
|
|
|
{
|
2008-12-31 17:50:54 +03:00
|
|
|
return (bool) (0 != (op->o_flags & OMPI_OP_FLAGS_INTRINSIC));
|
2004-06-29 04:02:25 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
2004-06-29 17:04:38 +04:00
|
|
|
* Check to see if an op is communative or not
|
2004-06-29 04:02:25 +04:00
|
|
|
*
|
|
|
|
* @param op The op to check
|
|
|
|
*
|
2004-06-29 17:04:38 +04:00
|
|
|
* @returns true If the op is communative
|
|
|
|
* @returns false If the op is not communative
|
2004-06-29 04:02:25 +04:00
|
|
|
*
|
|
|
|
* Self-explanitory. This is needed in a few top-level MPI functions;
|
|
|
|
* this function is provided to hide the internal structure field
|
|
|
|
* names.
|
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
static inline bool ompi_op_is_commute(ompi_op_t * op)
|
2004-06-29 04:02:25 +04:00
|
|
|
{
|
2008-12-31 17:50:54 +03:00
|
|
|
return (bool) (0 != (op->o_flags & OMPI_OP_FLAGS_COMMUTE));
|
2004-06-29 04:02:25 +04:00
|
|
|
}
|
|
|
|
|
2005-09-08 13:47:27 +04:00
|
|
|
/**
|
|
|
|
* Check to see if an op is floating point associative or not
|
|
|
|
*
|
|
|
|
* @param op The op to check
|
|
|
|
*
|
|
|
|
* @returns true If the op is floating point associative
|
|
|
|
* @returns false If the op is not floating point associative
|
|
|
|
*
|
|
|
|
* Self-explanitory. This is needed in a few top-level MPI functions;
|
|
|
|
* this function is provided to hide the internal structure field
|
|
|
|
* names.
|
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
static inline bool ompi_op_is_float_assoc(ompi_op_t * op)
|
2005-09-08 13:47:27 +04:00
|
|
|
{
|
2008-12-31 17:50:54 +03:00
|
|
|
return (bool) (0 != (op->o_flags & OMPI_OP_FLAGS_FLOAT_ASSOC));
|
2005-09-08 13:47:27 +04:00
|
|
|
}
|
|
|
|
|
2004-06-29 17:04:38 +04:00
|
|
|
|
2005-10-28 20:47:32 +04:00
|
|
|
/**
|
|
|
|
* Check to see if an op is valid on a given datatype
|
|
|
|
*
|
|
|
|
* @param op The op to check
|
|
|
|
* @param ddt The datatype to check
|
|
|
|
*
|
|
|
|
* @returns true If the op is valid on that datatype
|
|
|
|
* @returns false If the op is not valid on that datatype
|
|
|
|
*
|
|
|
|
* Self-explanitory. This is needed in a few top-level MPI functions;
|
|
|
|
* this function is provided to hide the internal structure field
|
|
|
|
* names.
|
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
static inline bool ompi_op_is_valid(ompi_op_t * op, ompi_datatype_t * ddt,
|
2005-10-28 20:47:32 +04:00
|
|
|
char **msg, const char *func)
|
|
|
|
{
|
|
|
|
/* Check:
|
|
|
|
- non-intrinsic ddt's cannot be invoked on intrinsic op's
|
|
|
|
- if intrinsic ddt invoked on intrinsic op:
|
2008-12-31 17:50:54 +03:00
|
|
|
- ensure the datatype is defined in the op map
|
|
|
|
- ensure we have a function pointer for that combination
|
|
|
|
*/
|
2005-10-28 20:47:32 +04:00
|
|
|
|
|
|
|
if (ompi_op_is_intrinsic(op)) {
|
- Split the datatype engine into two parts: an MPI specific part in
OMPI
and a language agnostic part in OPAL. The convertor is completely
moved into OPAL. This offers several benefits as described in RFC
http://www.open-mpi.org/community/lists/devel/2009/07/6387.php
namely:
- Fewer basic types (int* and float* types, boolean and wchar
- Fixing naming scheme to ompi-nomenclature.
- Usability outside of the ompi-layer.
- Due to the fixed nature of simple opal types, their information is
completely
known at compile time and therefore constified
- With fewer datatypes (22), the actual sizes of bit-field types may be
reduced
from 64 to 32 bits, allowing reorganizing the opal_datatype
structure, eliminating holes and keeping data required in convertor
(upon send/recv) in one cacheline...
This has implications to the convertor-datastructure and other parts
of the code.
- Several performance tests have been run, the netpipe latency does not
change with
this patch on Linux/x86-64 on the smoky cluster.
- Extensive tests have been done to verify correctness (no new
regressions) using:
1. mpi_test_suite on linux/x86-64 using clean ompi-trunk and
ompi-ddt:
a. running both trunk and ompi-ddt resulted in no differences
(except for MPI_SHORT_INT and MPI_TYPE_MIX_LB_UB do now run
correctly).
b. with --enable-memchecker and running under valgrind (one buglet
when run with static found in test-suite, commited)
2. ibm testsuite on linux/x86-64 using clean ompi-trunk and ompi-ddt:
all passed (except for the dynamic/ tests failed!! as trunk/MTT)
3. compilation and usage of HDF5 tests on Jaguar using PGI and
PathScale compilers.
4. compilation and usage on Scicortex.
- Please note, that for the heterogeneous case, (-m32 compiled
binaries/ompi), neither
ompi-trunk, nor ompi-ddt branch would successfully launch.
This commit was SVN r21641.
2009-07-13 08:56:31 +04:00
|
|
|
if (ompi_datatype_is_predefined(ddt)) {
|
2005-10-28 20:47:32 +04:00
|
|
|
/* Intrinsic ddt on intrinsic op */
|
2009-07-16 01:30:09 +04:00
|
|
|
if (-1 == ompi_op_ddt_map[ddt->id] ||
|
|
|
|
NULL == op->o_func.intrinsic.fns[ompi_op_ddt_map[ddt->id]]) {
|
2012-06-27 21:40:24 +04:00
|
|
|
(void) asprintf(msg,
|
|
|
|
"%s: the reduction operation %s is not defined on the %s datatype",
|
|
|
|
func, op->o_name, ddt->name);
|
2005-10-28 20:47:32 +04:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Non-intrinsic ddt on intrinsic op */
|
|
|
|
if ('\0' != ddt->name[0]) {
|
2012-06-27 21:40:24 +04:00
|
|
|
(void) asprintf(msg,
|
|
|
|
"%s: the reduction operation %s is not defined for non-intrinsic datatypes (attempted with datatype named \"%s\")",
|
|
|
|
func, op->o_name, ddt->name);
|
2005-10-28 20:47:32 +04:00
|
|
|
} else {
|
2012-06-27 21:40:24 +04:00
|
|
|
(void) asprintf(msg,
|
|
|
|
"%s: the reduction operation %s is not defined for non-intrinsic datatypes",
|
|
|
|
func, op->o_name);
|
2005-10-28 20:47:32 +04:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* All other cases ok */
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-06-29 04:02:25 +04:00
|
|
|
/**
|
2004-06-29 17:04:38 +04:00
|
|
|
* Perform a reduction operation.
|
2004-06-29 04:02:25 +04:00
|
|
|
*
|
2004-06-29 17:04:38 +04:00
|
|
|
* @param op The operation (IN)
|
|
|
|
* @param source Source (input) buffer (IN)
|
|
|
|
* @param target Target (output) buffer (IN/OUT)
|
|
|
|
* @param count Number of elements (IN)
|
|
|
|
* @param dtype MPI datatype (IN)
|
2004-06-29 04:02:25 +04:00
|
|
|
*
|
2004-06-29 17:04:38 +04:00
|
|
|
* @returns void As with MPI user-defined reduction functions, there
|
|
|
|
* is no return code from this function.
|
2004-06-29 04:02:25 +04:00
|
|
|
*
|
2004-06-29 17:04:38 +04:00
|
|
|
* Perform a reduction operation with count elements of type dtype in
|
|
|
|
* the buffers source and target. The target buffer obtains the
|
|
|
|
* result (i.e., the original values in the target buffer are reduced
|
|
|
|
* with the values in the source buffer and the result is stored in
|
|
|
|
* the target buffer).
|
|
|
|
*
|
|
|
|
* This function figures out which reduction operation function to
|
2005-03-25 23:43:19 +03:00
|
|
|
* invoke and whether to invoke it with C- or Fortran-style invocation
|
2004-06-29 17:04:38 +04:00
|
|
|
* methods. If the op is intrinsic and has the operation defined for
|
2005-03-25 23:43:19 +03:00
|
|
|
* dtype, the appropriate back-end function will be invoked.
|
2004-06-29 17:04:38 +04:00
|
|
|
* Otherwise, the op is assumed to be a user op and the first function
|
|
|
|
* pointer in the op array will be used.
|
|
|
|
*
|
|
|
|
* NOTE: This function assumes that a correct combination will be
|
|
|
|
* given to it; it makes no provision for errors (in the name of
|
|
|
|
* optimization). If you give it an intrinsic op with a datatype that
|
2005-03-25 23:43:19 +03:00
|
|
|
* is not defined to have that operation, it is likely to seg fault.
|
2004-06-29 04:02:25 +04:00
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
static inline void ompi_op_reduce(ompi_op_t * op, void *source,
|
|
|
|
void *target, int count,
|
|
|
|
ompi_datatype_t * dtype)
|
2004-06-29 04:02:25 +04:00
|
|
|
{
|
2008-12-31 17:50:54 +03:00
|
|
|
MPI_Fint f_dtype, f_count;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call the reduction function. Two dimensions: a) if both the op
|
|
|
|
* and the datatype are intrinsic, we have a series of predefined
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* functions for each datatype (that are *only* in C -- not
|
|
|
|
* Fortran or C++!), or b) the op is user-defined, and therefore
|
|
|
|
* we have to check whether to invoke the callback with the C,
|
|
|
|
* C++, or Fortran callback signature (see lengthy description of
|
|
|
|
* the C++ callback in ompi/mpi/cxx/intercepts.cc).
|
|
|
|
*
|
|
|
|
* NOTE: We *assume* the following:
|
2008-12-31 17:50:54 +03:00
|
|
|
*
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* 1. If the op is intrinsic, the op is pre-defined
|
|
|
|
* 2. That we will get a valid result back from the
|
|
|
|
* ompi_op_ddt_map[] (and not -1).
|
|
|
|
*
|
|
|
|
* Failures in these assumptions should have been caught by the
|
|
|
|
* upper layer (i.e., they should never have called this
|
|
|
|
* function). If either of these assumptions are wrong, it's
|
|
|
|
* likely that the MPI API function parameter checking is turned
|
2008-12-31 17:50:54 +03:00
|
|
|
* off, then it's an erroneous program and it's the user's fault.
|
|
|
|
* :-)
|
|
|
|
*/
|
|
|
|
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
/* For intrinsics, we also pass the corresponding op module */
|
|
|
|
if (0 != (op->o_flags & OMPI_OP_FLAGS_INTRINSIC)) {
|
2009-07-16 01:30:09 +04:00
|
|
|
op->o_func.intrinsic.fns[ompi_op_ddt_map[dtype->id]](source, target,
|
|
|
|
&count, &dtype,
|
|
|
|
op->o_func.intrinsic.modules[ompi_op_ddt_map[dtype->id]]);
|
2009-08-20 06:29:30 +04:00
|
|
|
return;
|
2008-12-31 17:50:54 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/* User-defined function */
|
2009-08-20 06:29:30 +04:00
|
|
|
if (0 != (op->o_flags & OMPI_OP_FLAGS_FORTRAN_FUNC)) {
|
2008-12-31 17:50:54 +03:00
|
|
|
f_dtype = OMPI_INT_2_FINT(dtype->d_f_to_c_index);
|
|
|
|
f_count = OMPI_INT_2_FINT(count);
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
op->o_func.fort_fn(source, target, &f_count, &f_dtype);
|
2009-08-20 06:29:30 +04:00
|
|
|
return;
|
2013-09-27 01:36:44 +04:00
|
|
|
} else if (0 != (op->o_flags & OMPI_OP_FLAGS_CXX_FUNC)) {
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
op->o_func.cxx_data.intercept_fn(source, target, &count, &dtype,
|
|
|
|
op->o_func.cxx_data.user_fn);
|
2009-08-20 06:29:30 +04:00
|
|
|
return;
|
2013-09-27 01:36:44 +04:00
|
|
|
} else if (0 != (op->o_flags & OMPI_OP_FLAGS_JAVA_FUNC)) {
|
|
|
|
op->o_func.java_data.intercept_fn(source, target, &count, &dtype,
|
|
|
|
op->o_func.java_data.baseType,
|
|
|
|
op->o_func.java_data.jnienv,
|
|
|
|
op->o_func.java_data.object);
|
|
|
|
return;
|
2004-06-29 17:04:38 +04:00
|
|
|
}
|
2009-08-20 06:29:30 +04:00
|
|
|
op->o_func.c_fn(source, target, &count, &dtype);
|
|
|
|
return;
|
2004-04-21 03:11:11 +04:00
|
|
|
}
|
|
|
|
|
2008-03-29 02:45:44 +03:00
|
|
|
/**
|
|
|
|
* Perform a reduction operation.
|
|
|
|
*
|
|
|
|
* @param op The operation (IN)
|
|
|
|
* @param source Source1 (input) buffer (IN)
|
|
|
|
* @param source Source2 (input) buffer (IN)
|
|
|
|
* @param target Target (output) buffer (IN/OUT)
|
|
|
|
* @param count Number of elements (IN)
|
|
|
|
* @param dtype MPI datatype (IN)
|
|
|
|
*
|
|
|
|
* @returns void As with MPI user-defined reduction functions, there
|
|
|
|
* is no return code from this function.
|
|
|
|
*
|
|
|
|
* Perform a reduction operation with count elements of type dtype in
|
|
|
|
* the buffers source and target. The target buffer obtains the
|
|
|
|
* result (i.e., the original values in the target buffer are reduced
|
|
|
|
* with the values in the source buffer and the result is stored in
|
|
|
|
* the target buffer).
|
|
|
|
*
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* This function will *only* be invoked on intrinsic MPI_Ops.
|
2008-03-29 02:45:44 +03:00
|
|
|
*
|
Two major things in this commit:
* New "op" MPI layer framework
* Addition of the MPI_REDUCE_LOCAL proposed function (for MPI-2.2)
= Op framework =
Add new "op" framework in the ompi layer. This framework replaces the
hard-coded MPI_Op back-end functions for (MPI_Op, MPI_Datatype) tuples
for pre-defined MPI_Ops, allowing components and modules to provide
the back-end functions. The intent is that components can be written
to take advantage of hardware acceleration (GPU, FPGA, specialized CPU
instructions, etc.). Similar to other frameworks, components are
intended to be able to discover at run-time if they can be used, and
if so, elect themselves to be selected (or disqualify themselves from
selection if they cannot run). If specialized hardware is not
available, there is a default set of functions that will automatically
be used.
This framework is ''not'' used for user-defined MPI_Ops.
The new op framework is similar to the existing coll framework, in
that the final set of function pointers that are used on any given
intrinsic MPI_Op can be a mixed bag of function pointers, potentially
coming from multiple different op modules. This allows for hardware
that only supports some of the operations, not all of them (e.g., a
GPU that only supports single-precision operations).
All the hard-coded back-end MPI_Op functions for (MPI_Op,
MPI_Datatype) tuples still exist, but unlike coll, they're in the
framework base (vs. being in a separate "basic" component) and are
automatically used if no component is found at runtime that provides a
module with the necessary function pointers.
There is an "example" op component that will hopefully be useful to
those writing meaningful op components. It is currently
.ompi_ignore'd so that it doesn't impinge on other developers (it's
somewhat chatty in terms of opal_output() so that you can tell when
its functions have been invoked). See the README file in the example
op component directory. Developers of new op components are
encouraged to look at the following wiki pages:
https://svn.open-mpi.org/trac/ompi/wiki/devel/Autogen
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateComponent
https://svn.open-mpi.org/trac/ompi/wiki/devel/CreateFramework
= MPI_REDUCE_LOCAL =
Part of the MPI-2.2 proposal listed here:
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24
is to add a new function named MPI_REDUCE_LOCAL. It is very easy to
implement, so I added it (also because it makes testing the op
framework pretty easy -- you can do it in serial rather than via
parallel reductions). There's even a man page!
This commit was SVN r20280.
2009-01-15 02:44:31 +03:00
|
|
|
* Otherwise, this function is the same as ompi_op_reduce.
|
2008-03-29 02:45:44 +03:00
|
|
|
*/
|
2008-12-31 17:50:54 +03:00
|
|
|
static inline void ompi_3buff_op_reduce(ompi_op_t * op, void *source1,
|
|
|
|
void *source2, void *target,
|
|
|
|
int count, ompi_datatype_t * dtype)
|
2008-03-29 02:45:44 +03:00
|
|
|
{
|
2008-12-31 17:50:54 +03:00
|
|
|
void *restrict src1;
|
|
|
|
void *restrict src2;
|
|
|
|
void *restrict tgt;
|
|
|
|
src1 = source1;
|
|
|
|
src2 = source2;
|
|
|
|
tgt = target;
|
|
|
|
|
2009-07-16 01:30:09 +04:00
|
|
|
op->o_3buff_intrinsic.fns[ompi_op_ddt_map[dtype->id]](src1, src2,
|
|
|
|
tgt, &count,
|
|
|
|
&dtype,
|
|
|
|
op->o_3buff_intrinsic.modules[ompi_op_ddt_map[dtype->id]]);
|
2006-08-24 20:38:08 +04:00
|
|
|
}
|
2008-12-31 17:50:54 +03:00
|
|
|
|
|
|
|
END_C_DECLS
|
2006-08-24 20:38:08 +04:00
|
|
|
|
2004-06-07 19:33:53 +04:00
|
|
|
#endif /* OMPI_OP_H */
|